26 research outputs found

    Synthesis and characterization of palladium(II) complexes with glycine coumarin derivatives

    Get PDF
    A Pd(II) complex with methyl 2-([1-{2,4-dioxochroman-3-ylidene}ethyl]amino)acetate was synthesized. The structures of both the ligand and its Pd(II) complex were determined by elemental analysis, and IR and NMR spectroscopy. Recrystallization of the Pd(II) complex from DMF/water solution resulted in its hydrolysis and the formation of the dimethylamine (2-[{1-(2,4-dioxochroman-3-ylidene) ethyl} amino] acetato) palladium(II) complex, the structure of which was determined by elemental analysis, IR, H-1- and C-13-NMR spectroscopy and X-ray analysis.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3626

    West Nile virus: characterization and diagnostic applications of monoclonal antibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diagnosis of West Nile virus (WNV) infections is often difficult due to the extensive antigenic cross-reactivity among flaviviruses, especially in geographic regions where two or more of these viruses are present causing sequential infections. The purpose of this study was to characterize a panel of monoclonal antibodies (MAbs) produced against WNV to verify their applicability in WNV diagnosis and in mapping epitope targets of neutralizing MAbs.</p> <p>Methods</p> <p>Six MAbs were produced and characterized by isotyping, virus-neutralization, western blotting and MAb-epitope competition. The MAb reactivity against various WNVs belonging to lineage 1 and 2 and other related flaviviruses was also evaluated. The molecular basis of epitopes recognized by neutralizing MAbs was defined through the selection and sequencing of MAb escape mutants. Competitive binding assays between MAbs and experimental equine and chicken sera were designed to identify specific MAb reaction to epitopes with high immunogenicity.</p> <p>Results</p> <p>All MAbs showed stronger reactivity with all WNVs tested and good competition for antigen binding in ELISA tests with WNV-positive equine and chicken sera. Four MAbs (3B2, 3D6, 4D3, 1C3) resulted specific for WNV, while two MAbs (2A8, 4G9) showed cross-reaction with Usutu virus. Three MAbs (3B2, 3D6, 4D3) showed neutralizing activity. Sequence analysis of 3B2 and 3D6 escape mutants showed an amino acid change at E307 (Lys → Glu) in the E protein gene, whereas 4D3 variants identified mutations encoding amino acid changed at E276 (Ser → Ile) or E278 (Thr → Ile). 3B2 and 3D6 mapped to a region on the lateral surface of domain III of E protein, which is known to be a specific and strong neutralizing epitope for WNV, while MAb 4D3 recognized a novel specific neutralizing epitope on domain II of E protein that has not previously been described with WNV MAbs.</p> <p>Conclusions</p> <p>MAbs generated in this study can be applied to various analytical methods for virological and serological WNV diagnosis. A novel WNV-specific and neutralizing MAb (4D3) directed against the unknown epitope on domain II of E protein can be useful to better understand the role of E protein epitopes involved in the mechanism of WNV neutralization.</p

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Stabilization of APIs and nutraceuticals through cocrystallization and molecular confinement

    No full text
    Cocrystallization of the molecule of interest could be a smart and dainty way to tune solubility properties of solid phases leaving the molecule chemically unchanged, hence it is widely investigated by companies and by solid state scientists. Despite of this extremely high interest towards cocrystallization no particular emphasis has been paid to using it as a means to stabilize liquid molecules. In this work we define a benchmark of relevant molecules for human health that have been combined with suitable partners according to crystal engineering methods in order to obtain cocrystals. Solubility properties in different solvents of cocrystals new solid phases have been tested and compared to the properties of the drugs. A further approach to deal with volatile compounds is molecular confinement inside molecular scaffold. Nowadays metal organic frameworks (MOFs) are studied in many fields ranging from catalysis to trapping or storage of gases, such as hydrogen, methane, CO2 thanks to their extremely high porosity. Our goal is to confine liquid guests of biological relevance inside MOF pores, monitoring via X-ray diffraction, spectroscopy and thermal analysis the stabilization of the molecule of interest inside the cavities

    Coordination Driven Capture of Nicotine Inside a Mesoporous MOF

    No full text
    Metal organic frameworks (MOFs) are a wide class of crystalline porous polymers studied in many fields, ranging from catalysis to gas storage. In the past few years, MOFs have been studied for the encapsulation of organic or organometallic molecules and for the development of potential drug carriers. Here, we report on the study of two structurally-related mesoporous Cu-MOFs, namely PCN-6 and PCN-6′ (PCN stands for Porous Coordination Network), for nicotine trapping. Nicotine is a well-known alkaloid liquid molecule at room temperature, whose crystalline structure is still unknown. In this work, the loading process was monitored by electron ionization mass spectrometry by using a direct insertion probe (DIP-EI/MS), infrared (IR), and ultraviolet/visible (UV/VIS) analysis. Both nuclear magnetic resonance (NMR) spectroscopy and thermogravimetric (TGA) analysis showed evidence that nicotine trapping reaches remarkable uptakes up to 40 wt %. In the case of PCN-6@nicotine, X-ray structural resolution revealed that the guest uptake is triggered by coordination of the pyridine ring of nicotine to the copper nuclei of the paddle-wheel units composing the framework of PCN-

    Structure determination of novel ionic co-crystals from powder data: the use of rigid fragments in simulated annealing algorithms

    Get PDF
    A new approach is presented here for the structural solution of anhydrous and hydrated metal–organic coordination compounds of alkali and alkaline earth metals by using rigid structure fragments in combination with simulated annealing algorithms. We empirically show how this approach minimizes computation time, while allowing us to obtain the correct result. The structures of two novel ionic co-crystals have been solved from powder data with this approach
    corecore