31 research outputs found

    Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture

    Get PDF
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition

    Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture

    Get PDF
    The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition

    Genome-wide structural variant analysis identifies risk loci for non-Alzheimer’s dementias

    Get PDF
    We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer’s dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia

    Suspended crystalline silicon thermometry devices: towards quantum nanophononics

    No full text
    posterInternational audienceThis work addresses the current experimental gap in thermal transport regimes and phonon transport at low temperatures and small scales. These conditions cause the wavelength λ and mean free pass Λ of phonons to become equal or greater than the sample’s dimensions, giving rise to several interesting quantum phenomena, hence the name quantum nanophononics. Multiple phenomena are expected to be studied : Phonon interferometric effects [1], thermal rectification, quantization of thermal transport, etc..

    Suspended crystalline silicon thermometry devices: towards quantum nanophononics

    No full text
    posterInternational audienceThis work addresses the current experimental gap in thermal transport regimes and phonon transport at low temperatures and small scales. These conditions cause the wavelength λ and mean free pass Λ of phonons to become equal or greater than the sample’s dimensions, giving rise to several interesting quantum phenomena, hence the name quantum nanophononics. Multiple phenomena are expected to be studied : Phonon interferometric effects [1], thermal rectification, quantization of thermal transport, etc..

    Suspended crystalline silicon thermometry devices: towards quantum nanophononics

    No full text
    posterInternational audienceThis work addresses the current experimental gap in thermal transport regimes and phonon transport at low temperatures and small scales. These conditions cause the wavelength λ and mean free pass Λ of phonons to become equal or greater than the sample’s dimensions, giving rise to several interesting quantum phenomena, hence the name quantum nanophononics. Multiple phenomena are expected to be studied : Phonon interferometric effects [1], thermal rectification, quantization of thermal transport, etc..
    corecore