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Genome sequencing analysis identifies new loci associated 

with Lewy body dementia and provides insights into the 

complex genetic architecture 
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Abstract 

The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we 

performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy 

controls to study the genetic architecture of this understudied form of dementia and to generate a 

resource for the scientific community. Genome-wide association analysis identified five 

independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the 

gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with 

Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the 

complex genetic architecture of this age-related neurodegenerative condition.  
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Introduction 

Lewy body dementia (LBD) is a clinically heterogeneous neurodegenerative disease 

characterized by progressive cognitive decline, parkinsonism, and visual hallucinations1. There 

are no effective disease-modifying treatments available to slow disease progression, and current 

therapy is limited to symptomatic and supportive care. At postmortem, the disorder is 

distinguished by the widespread cortical and limbic deposition of α-synuclein protein in the form 

of Lewy bodies that are also a hallmark feature of Parkinson’s disease. The vast majority of LBD 

patients additionally exhibit Alzheimer’s disease co-pathology2. These neuropathological 

observations have led to the, as yet unproven, hypothesis that LBD lies on a disease continuum 

between Parkinson’s disease and Alzheimer’s disease3. Though relatively common in the 

community, with an estimated 1.4 million prevalent cases in the United States4, the genetic 

contributions to this underserved condition are poorly understood.  

 

The rapid advances in genome sequencing technologies offer unprecedented 

opportunities to identify and characterize disease-associated genetic variation. Here, we 

performed whole-genome sequencing in a cohort of 2,981 patients diagnosed with LBD and 

4,391 neurologically healthy subjects. We analyzed these data using a genome-wide association 

study (GWAS) approach. This investigation identified five risk loci that were replicated in an 

independent case-control cohort5,6. We also performed gene aggregation tests, and we modeled 

the relative contributions of Alzheimer’s disease and Parkinson’s disease risk variants to this 

fatal neurodegenerative disease (see Fig. 1 for an analysis overview). Additionally, we created a 

resource for the scientific community to mine for new insights into the genetic etiology of LBD 

and to expedite the development of targeted therapeutics. 
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Results 

Genome-wide association analysis identifies new loci associated with LBD 

After quality control, whole-genome sequence data from 2,591 patients diagnosed with 

LBD and 4,027 neurologically healthy subjects were available for study. Participants were 

recruited across 44 institutions/consortia and were diagnosed according to established consensus 

criteria. Using a GWAS approach, we identified five loci that surpassed the genome-wide 

significance threshold (Table 1, Fig. 2a). Three of these signals were located at known LBD risk 

loci within the genes GBA, APOE, and SNCA7-10. The remaining GWAS signals in BIN1 and 

TMEM175 represented novel LBD risk loci. Notably, these loci have been implicated in other 

age-related neurodegenerative diseases, including Alzheimer’s disease (BIN1) and Parkinson’s 

disease (TMEM175)11,12. We examined the associations of BIN1 and TMEM175 risk alleles with 

CERAD and Braak semi-quantitative pathological measures of Alzheimer’s disease co-

pathology. We found that the BIN1 risk allele was significantly associated with increased 

neurofibrillary tangle pathology (Fisher’s exact test p-value based on Braak neurofibrillary 

tangle staging = 0.0002; Supplementary Fig. 2). In contrast, there was no significant association 

of the TMEM175 risk allele with Alzheimer’s disease co-pathology. Conditional analyses 

detected a second signal at the APOE locus (Supplementary Fig. 1 for regional association plots, 

Supplementary Fig. 3 for conditional association analyses). Subanalysis GWAS of pathologically 

defined LBD cases only versus control subjects identified the same risk loci (Fig. 2b). Finally, 

we replicated each of the observed risk loci in an independent sample of 970 European-ancestry 

LBD cases and 8,928 control subjects (Table 1)5,6.  
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Gene-level aggregation testing identifies GBA as a pleomorphic risk gene 

 The significant loci from our GWAS explained only a small fraction (1%) of the 

conservatively estimated narrow-sense heritability of LBD of 10.81% (95% confidence interval 

[CI]: 8.28% – 13.32%, p-value = 9.17 x 10-4). To explore whether rare variants contribute to the 

remaining risk of LBD, we performed gene-level sequence kernel association – optimized 

(SKAT-O) tests of missense and loss-of-function mutations with a minor allele frequency (MAF) 

threshold ≤ 1% across the genome13. This rare variant analysis identified GBA as associated with 

LBD (Fig. 2c). GBA, encoding the lysosomal enzyme glucocerebrosidase, is a known 

pleomorphic risk gene of LBD and Parkinson’s disease7,14,15, and our rare and common variant 

analyses confirm a prominent role of this gene in the pathogenesis of Lewy body diseases.  

 

Functional inferences from colocalization and gene expression analyses 

Most GWAS loci are thought to operate through the regulation of gene expression16,17. 

Thus, we performed a colocalization analysis to determine whether a shared causal variant drives 

association signals for LBD risk and gene expression. Expression quantitative trait loci (eQTLs) 

were obtained from eQTLGen and PsychENCODE18,19, the largest available human blood and 

brain eQTL datasets. We found evidence of colocalization between the TMEM175 locus and an 

eQTL regulating TMEM175 expression in blood (posterior probability for H4 (PPH4) = 0.99; 

Fig. 3a; Supplementary Table 1). There was also colocalization between the association signal at 

the SNCA locus and an eQTL regulating SNCA-AS1 expression in the brain (PPH4 = 0.96; Fig. 

3b; Supplementary Table 1). Interestingly, the index variant at the SNCA locus was located 

within the SNCA-AS1 gene, which overlaps with the 5’-end of SNCA and encodes a long 

noncoding antisense RNA known to regulate SNCA expression. Sensitivity analyses confirmed 
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that these colocalizations were robust to changes in the prior probability of a variant associating 

with both traits (Supplementary Fig. 4).  

 

 We interrogated the effect of each SNP in the region surrounding SNCA-AS1 on LBD risk 

using our GWAS data and SNCA-AS1 expression using the PsychENCODE data (Supplementary 

Fig. 5a). All genome-wide significant risk SNPs in the locus had a negative beta coefficient, 

while the shared SNCA-AS1 eQTL had a positive beta coefficient. This negative correlation 

suggested that increased SNCA-AS1 expression is associated with reduced LBD risk (Spearman’s 

rho = -0.42; p-value = 0.0012; Supplementary Fig. 5b). 

 

Analysis of human bulk-tissue RNA-sequencing data from the Genotype-Tissue 

Expression (GTEx) consortium and single-nucleus RNA-sequencing data of the medial temporal 

gyrus from the Allen Institute of Brain Science 20,21 demonstrated that TMEM175 is ubiquitously 

expressed, whereas SNCA-AS1 is predominantly expressed in brain tissue (Supplementary Fig. 

6a; Supplementary Table 2). At the cellular level, TMEM175 is highly expressed in 

oligodendrocyte progenitor cells, while SNCA-AS1 demonstrates neuronal specificity 

(Supplementary Fig. 6b; Supplementary Table 2). SNCA and SNCA-AS1 share a similar, though 

not identical, tissue expression profile (Supplementary Fig. 7). 

 

LBD risk overlaps with risk profiles of Alzheimer’s disease and Parkinson’s disease 

We leveraged our whole-genome sequence data to explore the etiological relationship 

between Alzheimer’s disease, Parkinson’s disease, and LBD. To do this, we applied genetic risk 

scores derived from large-scale GWASes in Alzheimer’s and Parkinson’s disease to individual-
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level genetic data from our LBD case-control cohort22,23. We tested the associations of the 

Alzheimer’s and Parkinson’s disease genetic risk scores with LBD disease status, and with age at 

death, age at onset, and the duration of illness observed among the LBD cases.  

 

Patients diagnosed with LBD had a higher genetic risk for developing both Alzheimer’s 

disease (odds ratio [OR] = 1.66 per standard deviation of Alzheimer’s disease genetic risk, 95% 

CI = 1.58 - 1.74, p-value < 2 x 10-16, Fig. 5a) and Parkinson’s disease (OR = 1.20, 95% CI =1.14 

- 1.26, p-value = 4.34 x 10-12, Fig. 5b). These risk scores remained significant after adjusting for 

genes that substantially contribute to Alzheimer’s disease (model after adjustment for APOE: OR 

= 1.53, 95% CI = 1.37 - 1.72, p-value = 3.29 x 10-14) and Parkinson’s disease heritable risk 

(model after adjustment for GBA, SNCA, and LRRK2: OR = 1.26, 95% CI = 1.19 - 1.34, p-value 

= 5.91 x 10-14). The Alzheimer’s disease genetic risk score was also found to be significantly 

associated with an earlier age of death in LBD (β = -1.77 years per standard deviation increase in 

the genetic risk score from the population mean, standard error [SE] = 0.19, p-value < 2 x 10-16) 

and shorter disease duration (β = -0.90 years, SE = 0.27, p-value =  0.0007). In contrast, the 

Parkinson’s disease genetic risk score was associated with an earlier age at onset among patients 

diagnosed with LBD (β = -0.98, SE = 0.28, p-value = 0.00045), indicating that higher 

Parkinson’s disease risk is associated with earlier age at onset in LBD. We found no evidence of 

interaction between the genetic risk scores of Alzheimer’s disease and Parkinson’s disease in the 

LBD cohort (OR = 0.99, 95 % CI = 0.95 - 1.03, p-value = 0.59), implying that Alzheimer’s 

disease and Parkinson’s disease risk variants are independently associated with LBD risk.  
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Enrichment analysis identifies pathways involved in LBD 

Pathway enrichment analysis of LBD, using a polygenic risk score based on the GWAS 

risk variants, found several significantly enriched gene ontology processes associated with LBD 

(Fig. 6). These related to the regulation of amyloid-beta formation (adjusted p-value = 0.04), 

regulation of endocytosis (adjusted p-value = 0.02), tau protein binding (adjusted p-value = 1.85 

x 10-5), and others. Among these, the regulation of amyloid precursor protein, amyloid-beta 

formation, and tau protein binding have been previously implicated in the pathogenesis of 

Alzheimer’s disease, while regulation of endocytosis is particularly important in the pathogenesis 

of Parkinson’s disease24,25. These observations support the notion of overlapping disease-

associated pathways in these common age-related neurodegenerative diseases.  

 

Association of polygenic risk with clinical dementia severity 

We performed an association analysis of LBD polygenic risk with dementia severity, as 

measured by the Clinical Dementia Rating scale26. We found that LBD patients in the highest 

polygenic risk score quintile had more severe impairment at baseline evaluation compared to 

LBD patients in the lowest quintile (χ2 = 5.60, df = 1, p-value = 0.009; Supplementary Fig. 8). 

 

Discussion 

Our analyses highlight the contributions of common and rare variants to the complex 

genetic architecture of LBD, a common and fatal neurodegenerative disease. Specifically, our 

GWAS identified five independent genome-wide significant loci (GBA, BIN1, TMEM175, 

SNCA-AS1, APOE) that influence risk for developing LBD, whereas the genome-wide gene-

based aggregation tests implicated mutations in GBA as being critical in the pathogenesis of the 
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disease. We further detected strong cis-eQTL colocalization signals at the TMEM175 and SNCA-

AS1 loci, indicating that the risk of disease at these genomic regions is driven by expression 

changes of these particular genes. Finally, we provided definitive evidence that the risk of LBD 

is driven, at least in part, by the genetic variants associated with the risk of developing both 

Alzheimer’s disease and Parkinson’s disease. 

 

We replicated all five GWAS signals in an independent LBD case-control dataset derived 

from imputed genotyping array data. Among these, GBA (encoding the lysosomal enzyme 

glucocerebrosidase), APOE (encoding apolipoprotein E), and SNCA (encoding α-synuclein) are 

known LBD risk genes7-9. In addition to these previously described loci, we identified a novel 

locus on chromosome 2q14.3, located 28 kb downstream to the BIN1 gene, which is a known 

risk locus for Alzheimer’s disease11. BIN1 encodes the bridging integrator 1 protein that is 

involved in endosomal trafficking. The depletion of BIN1 reduces the lysosomal degradation of 

β-site APP-cleaving enzyme 1 (BACE1), resulting in increased amyloid-β production27. 

Furthermore, the loss of BIN1 promotes the propagation of tau pathology by increasing aggregate 

internalization via endocytosis and endosomal trafficking28. The direction of effect observed in 

LBD is the same as in Alzheimer’s disease (Supplementary Table 3). The observed pleiotropic 

effects between LBD and Alzheimer’s disease prompt us to speculate that mitigating BIN1-

mediated endosomal dysfunction could have therapeutic implications in both neurodegenerative 

diseases.  

 

A second novel LBD signal was detected within the lysosomal TMEM175 gene on 

chromosome 4p16.3, a known Parkinson’s disease risk locus12. Deficiency of TMEM175, 
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encoding a transmembrane potassium channel, impairs lysosomal function, lysosome-mediated 

autophagosome clearance, and mitochondrial respiratory capacity. Loss-of-function further 

increases the deposition of phosphorylated α-synuclein29, which makes TMEM175 a plausible 

LBD risk gene. The direction of effect is the same in LBD as it is in Parkinson’s disease 

(Supplementary Table 3), and identification of TMEM175 underscores the role of lysosomal 

dysfunction in the pathogenesis of Lewy body diseases.  

 

Our data confirm the hypothesis that the LBD genetic architecture is complex and 

overlaps with the risk profiles of Alzheimer’s disease and Parkinson’s disease. First, several 

genome-wide significant risk loci in our GWAS analysis have been previously described either 

in the Alzheimer’s disease literature (APOE, BIN1) or have been associated with risk of 

developing Parkinson’s disease (GBA, TMEM175, SNCA)11,12,30-32. Second, genome-wide gene-

based aggregation tests of rare mutations similarly identified GBA, which has been previously 

implicated in Parkinson’s disease7. Third, genetic risk scores derived from Alzheimer’s disease 

and Parkinson’s disease GWAS meta-analyses predicted risk for LBD independently, even after 

removal of the strongest signals (APOE, GBA, SNCA, and LRRK2). Interestingly, our data did 

not show a synergistic effect between the risk of PD and AD in the pathogenesis of LBD, though 

analysis of larger cohorts will be required to confirm this observation.  

 

     Comparing the patterns of the risk loci in LBD with the patterns of risk in published 

Parkinson’s disease and Alzheimer’s disease GWAS meta-analyses provided additional insights 

into this complex relationship. The directions of effect at the index variants of the GBA and 

TMEM175 loci were the same in LBD as the directions observed in Parkinson’s disease23. 
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Likewise, the directions of effect for the BIN1 and APOE signals were the same as the directions 

detected in Alzheimer’s disease (Supplementary Table 3)33. However, we observed a notably 

different profile at the SNCA locus in LBD compared to PD. Our GWAS and colocalization 

analyses implicated SNCA-AS1, a non-coding RNA that regulates SNCA expression, as the main 

signal at the SNCA locus. In contrast, the main signal in Parkinson’s disease is detected at the 3’-

end of SNCA34. This finding suggests that the regulation of SNCA expression may be different in 

LBD compared to Parkinson’s disease and that only specific SNCA transcripts that are regulated 

by SNCA-AS1 drive risk for developing dementia. Further, SNCA-AS1 may prove to be a more 

amenable therapeutic target than SNCA itself due to its neuronal specificity. 

 

As part of this study, we created a foundational resource that will facilitate the study of 

molecular mechanisms across a broad spectrum of neurodegenerative diseases. We anticipate 

that these data will be widely accessed for several reasons. First, the resource is the largest 

whole-genome sequence repository in LBD to date. Second, the nearly 2,000 neurologically 

healthy, aged individuals included within this resource can be used as control subjects for the 

study of other neurological and age-related diseases. Third, we prioritized the inclusion of 

pathologically confirmed LBD patients, representing more than two thirds of the case cohort, to 

ensure high diagnostic accuracy among our case cohort participants. Finally, all genomes are of 

high quality and were generated using a uniform genome sequencing, alignment, and variant-

calling pipeline. Whole genome sequencing data on this large case-control cohort has allowed us 

to undertake a comprehensive genomic evaluation of both common and rare variants, including 

immediate fine-mapping of association signals to pinpoint the functional variants at the 

TMEM175 and SNCA-AS1 loci. The availability of genome-sequence data will facilitate similar 
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comprehensive evaluations of less commonly studied variant types, such as repeat expansions 

and structural variants.  

 

Our study has limitations. We focused on individuals of European ancestry, as this is the 

population in which large cohorts of LBD patients were readily available. Recruiting patients and 

healthy controls from diverse populations will be crucial for future research to understand the 

genetic architecture of LBD. Another constraint is the use of short-read sequencing, rather than 

long-read sequencing applications, that limits the resolution of complex, repetitive, and GC-rich 

genomic regions35. Most study participants did not have in-depth phenotype information using 

standardized rating scales available. Further, despite our large sample size, we had limited power 

to detect common genetic variants of small effect size, and additional large-scale genomic 

studies will be required to unravel the missing heritability of LBD. 

 

In conclusion, our study identified novel loci as relevant in the pathogenesis of LBD. Our 

findings confirmed that LBD genetically intersects with Alzheimer’s disease and Parkinson’s 

disease and highlighted the polygenic contributions of these other neurodegenerative diseases to 

its pathogenesis. Determining shared molecular genetic relationships among complex 

neurodegenerative diseases paves the way for precision medicine and has implications for 

prioritizing targets for therapeutic development. We have made the whole-genome sequence data 

available to the research community. These genomes constitute the largest sequencing effort in 

LBD to date and are designed to accelerate the pace of discovery in dementia.  
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Methods 

Cohort description and study design 

A total of 5,154 participants of European ancestry (2,981 LBD cases, 2,173 

neurologically healthy controls) were recruited across 17 European and 27 North American 

sites/consortia to create a genomic resource for LBD research (Supplementary Table 4). In 

addition to these resource genomes, we obtained convenience control genomes from (1) the 

Wellderly cohort (n = 1,202), a cohort of healthy, aged European-ancestry individuals recruited 

in the United States36, and (2) European-ancestry control genomes generated by the National 

Institute on Aging and the Accelerating Medicine Partnership - Parkinson’s Disease Initiative 

(www.amp-pd.org; n = 1,016). This brought the total number of control subjects available for 

this study to 4,391. 

 

All control cohorts were selected based on a lack of evidence of cognitive decline in their 

clinical history and absence of neurological deficits on neurological examination. Pathologically 

confirmed control subjects (n = 605) had no evidence of significant neurodegenerative disease on 

histopathological examination. LBD patients were diagnosed with pathologically definite or 

clinically probable disease according to consensus criteria37,38. The case cohort included 1,789 

(69.0%) autopsy-confirmed LBD cases and 802 (31.0%) clinically probable LBD patients. 

63.4% of LBD cases were male, as is typical for the LBD patient population39. The demographic 

characteristics of the cohorts are summarized in Supplementary Table 5. The appropriate 

institutional review boards of participating institutions approved the study (03-AG-N329, 

NCT02014246), and informed consent was obtained from all subjects or their surrogate decision-

makers, according to the Declaration of Helsinki.  
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Whole-genome sequencing 

Fluorometric quantitation of the genomic DNA samples was performed using the 

PicoGreen dsDNA assay (Thermo Fisher). PCR-free, paired-end libraries were constructed by 

automated liquid handlers using the Illumina TruSeq chemistry according to the manufacturer's 

protocol. DNA samples underwent sequencing on an Illumina HiSeq X Ten sequencer (v.2.5 

chemistry, Illumina) using 150 bp, paired-end cycles. 

 

Sequence alignment, variant calling 

Genome sequence data were processed using the pipeline standard developed by the 

Centers for Common Disease Genomics (CCDG; https://www.genome.gov/27563570/). This 

standard allows for whole-genome sequence data processed by different groups to generate 

‘functionally equivalent’ results40. The GRCh38DH reference genome was used for alignment, 

as specified in the CCDG standard. For whole-genome sequence alignments and processing, the 

Broad Institute’s implementation of the functional equivalence standardized pipeline was used. 

This pipeline, which incorporates the GATK (2016) Best Practices41, was implemented in the 

workflow description language for deployment and execution on the Google Cloud Platform. 

Single-nucleotide variants and indels were called from the processed whole-genome sequence 

data following the GATK Best Practices using another Broad Institute workflow for joint 

discovery and Variant Quality Score Recalibration. Both Broad workflows for WGS sample 

processing and joint discovery are publicly available (https://github.com/gatk-workflows/broad-

prod-wgs-germline-snps-indels). All whole-genome sequence data were processed using the 

same pipeline. 

https://www.genome.gov/27563570/
https://github.com/gatk-workflows/broad-prod-wgs-germline-snps-indels
https://github.com/gatk-workflows/broad-prod-wgs-germline-snps-indels
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Quality control 

For sample-level quality control checks, genomes were excluded from the analysis for the 

following reasons: (1) a high contamination rate (>5% based on VerifyBamID freemix metric)42, 

(2) an excessive heterozygosity rate (exceeding +/- 0.15 F-statistic), (3) a low call rate (≤ 95%), 

(4) discordance between reported sex and genotypic sex, (5) duplicate samples (determined by 

pi-hat statistics > 0.8), (6) non-European ancestry based on principal components analysis when 

compared to the HapMap 3 Genome Reference Panel (Supplementary Fig. 10)43, and (7) samples 

that were related (defined as having a pi-hat > 0.125).  

 

For variant-level quality control, we excluded: (1) variants that showed non-random 

missingness between cases and controls (p-value ≤ 1 x 10-4), (2) variants with haplotype-based 

non-random missingness (p-value  ≤ 1 x 10-4), (3) variants with an overall missingness rate of ≥ 

5%, (4) non-autosomal variants (X, Y, and mitochondrial chromosomes), (5) variants that 

significantly departed from Hardy-Weinberg equilibrium in the control cohort (p-value ≤ 1 x 10-

6), (6) variants mapping to variable, diversity, and joining (VDJ) recombination sites, as well as 

variants in centromeric regions +/- 10 kb (due to poor sequence alignment and incomplete 

resolution of the reference genome assembly at these sites)44, (7) variants for which the allele 

frequency in the aged control subjects (Wellderly cohort) significantly deviated from the other 

control cohorts (non-Wellderly) based on FDR-corrected chi-square tests (p-value < 0.05), (8) 

variants for which the MAFs in our control cohorts significantly differed from reported 

frequencies in the NHLBI Trans-Omics TOPMed database (freeze 5b; www.nhlbiwgs.org) or 
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gnomAD (version 3.0) (FDR-corrected chi-square test p-value < 0.05)45, (9) variants that failed 

TOPMed variant calling filters, and (10) spanning deletions.  

 

After these quality control filters were applied, there were 6,651 samples available for 

analysis. Supplementary Fig. 9 shows quality control metrics. 

 

Single-variant association analysis 

We performed a GWAS in LBD (n = 2,591 cases and 4,027 controls) using logistic 

regression in PLINK (v.2.0) with a minor allele frequency threshold of >1% based on the allele 

frequency estimates in the LBD case cohort46. We used the step function in the R MASS package 

to determine the minimum number of principal components (generated from common single 

nucleotide variants) required to correct for population substructure47. The first two principal 

components in our study cohorts compared to the HapMap3 Genomic Resource Panel are shown 

in Supplementary Fig. 10a. Based on this analysis, we incorporated sex, age, and five principal 

components (PC1, PC3, PC4, PC5, PC7) as covariates in our model. Quantile-quantile plots 

revealed minimal residual population substructure, as estimated by the sample size-adjusted 

genome-wide inflation factor λ1000 of 1.004 (Supplementary Fig. 10b). The Bonferroni threshold 

for genome-wide significance was 5.0 x 10-8. A conditional analysis was performed for each 

GWAS locus by adding each respective index variant to the covariates (Supplementary Fig. 3).  

 

For the LBD GWAS replication analysis, we obtained genotyping array data from two 

independent, non-overlapping, European-ancestry LBD case-control cohorts, totaling 970 LBD 

cases and 8,928 controls combined, as described elsewhere5,6. The data were cleaned by applying 
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the same sample- and variant-level quality control steps that were used in the discovery 

genomes. We imputed the data against the NHLBI TopMed imputation reference panel under 

default settings with Eagle v.2.4 phasing48-50. Variants with an R2 value < 0.3 were excluded. A 

meta-analysis of the two cohorts was performed with METAL under a fixed-effects model and 

variants that were significant in the discovery stage were extracted51. 

 

Genotype-pathology association analysis 

We evaluated the association of the newly identified LBD risk alleles in BIN1 and 

TMEM175 with the pathological changes of Alzheimer’s disease. Neuritic plaque staging 

information, assessed by the CERAD method52, was available for 700 pathologically-confirmed 

LBD cases, while neurofibrillary tangle pathology staging, as assessed by Braak method53, was 

available for 1,459 definite LBD cases. Association testing between the risk alleles and the semi-

quantitative neuritic plaque and neurofibrillary tangle burden was performed using Fisher’s exact 

tests. 

 

Colocalization analyses 

Coloc (v.4.0.1) was used to evaluate the probability of LBD loci and expression 

quantitative trait loci (eQTLs) sharing a single causal variant54. This tool incorporates a Bayesian 

statistical framework that computes posterior probabilities for five hypotheses: namely, there is 

no association with either trait (hypothesis 0, H0); an associated LBD variant exists but no 

associated eQTL variant (H1); there is an associated eQTL variant but no associated LBD variant 

(H2); there is an association with an eQTL and LBD risk variant, but they are two independent 

variants (H3); and there is a shared associated LBD variant and eQTL variant within the analyzed 
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region (H4). Cis-eQTLs were derived from eQTLGen (n = 31,684 individuals; accessed February 

19, 2019) and PsychENCODE (n = 1,387 individuals; accessed February 20, 2019)18,19. For each 

locus, we examined all genes within 1Mb of a significant region of interest, as defined by our 

LBD GWAS (p-value < 5.0 x 10-8). Coloc was run using the default p1 = 10-4 and p2 = 10-4 

priors, while the p12 prior was set to p12 = 5 x 10-6 55. Loci with a posterior probability for H4 

(PPH4) ≥ 0.90 were considered colocalized. All colocalizations were subjected to sensitivity 

analyses to explore the robustness of our conclusions to changes in the p12 prior (i.e., the 

probability that a given variant affects both traits). 

 

Cell-type and tissue specificity measures 

To determine specificity of a gene’s expression to a tissue or cell-type, specificity values 

were generated from two independent gene expression datasets: 1) bulk-tissue RNA-sequencing 

of 53 human tissues from the Genotype-Tissue Expression consortium (GTEx; v.8)21; and 2) 

human single-nucleus RNA-sequencing of the middle temporal gyrus from the Allen Institute for 

Brain Science (n = 7 cell types)20. Specificity values for GTEx were generated using modified 

code from a previous publication56. Expression of tissues was averaged by organ (except in the 

case of brain; n = 35 tissues in total). Specificity values for the Allen Institute for Brain Science-

derived dataset were generated using gene-level exonic reads and the ‘generate.celltype.data’ 

function of the EWCE package57. The specificity values for both datasets and the code used to 

generate these values are available at https://github.com/RHReynolds/MarkerGenes. 
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Heritability analysis 

The narrow-sense heritability (h2), a measure of the additive genetic variance, was 

calculated using GREML-LDMS to determine how much of the genetic liability for LBD is 

explained by common genetic variants58. This analysis included unrelated individuals (pi-hat < 

0.125, n = 2,591 LBD cases, and n = 4,027 controls) and autosomal variants with a MAF >1%. 

The analysis was adjusted for sex, age, and five principal components (PC1, PC3, PC4, PC5, 

PC7), and a disease prevalence of 0.1% to account for ascertainment bias.  

 

Gene-based rare variant association analysis 

We conducted a genome-wide, gene-based sequence kernel association test - optimized 

(SKAT-O) analysis of missense and loss-of-function mutations to determine the difference in the 

aggregate burden of rare coding variants between LBD cases and controls13. This analysis was 

performed in RVTESTS (v.2.1.0) using default parameters after annotating variants in 

ANNOVAR (v.2018-04/16)59,60. The study cohort for this analysis consisted of 2,591 LBD cases 

and 4,027 control subjects. We used a MAF threshold of ≤ 1% and a minor allele count (MAC) 

of ≥ 3 as filters. The covariates used in this analysis included sex, age, and five principal 

components (PC1, PC3, PC4, PC5, PC7). The Bonferroni threshold for genome-wide 

significance was 2.86 x 10-6 (0.05 / 17,483 autosomal genes tested).  

 

Predictions of LBD risk using Alzheimer’s disease and Parkinson’s disease risk scores 

Genetic risk scores were generated using PLINK (v.1.9)46 based on summary statistics 

from recent Alzheimer’s disease and Parkinson’s disease GWAS meta-analyses22,23. Considering 

the LBD cohort as our target dataset, risk allele dosages were counted across Alzheimer’s 
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disease or Parkinson’s disease loci per sample (i.e., giving a dose of two if homozygous for the 

risk allele, one if heterozygous, and zero if homozygous for the alternate allele). The SNPs were 

weighted by their log odds ratios, giving greater weight to alleles with higher risk estimates, and 

a composite genetic risk score was generated across all risk loci. Genetic risk scores were z-

transformed prior to analysis, centered on controls, with a mean of zero and a standard deviation 

of one in the control subjects. Regression models were then applied to test for association with 

the risk of developing LBD (based on logistic regression) or the age at death, age at onset, and 

disease duration (linear regression), adjusting for sex, age (risk and disease duration only), and 

five principal components (PC1, PC3, PC4, PC5, PC7) to account for population stratification.  

 

Polygenic risk score generation for pathway enrichment and phenotype associations  

A genome-wide LBD polygenic risk score was generated using PRSice-261. The 

polygenic risk score was computed by summing the risk alleles associated with LBD that had 

been weighted by the effect size estimates generated by performing a GWAS in the 

pathologically confirmed LBD cases and controls. This workflow identified the optimum p-value 

threshold (1 x 10-4 in our dataset) for variant selection, allowing for the inclusion of variants that 

failed to reach genome-wide significance but that contributed to disease risk, nonetheless. After 

excluding variants without an rs-identifier, the remaining 122 variants were ranked based on 

their GWAS p-values, with the APOE, GBA, SNCA, BIN1 and TMEM175 genes added to the top 

five positions. The list was then analyzed for: a) pathway enrichment using the g:Profiler toolkit 

(v.0.1.8)62. We defined the genes involved in the pathways and gene sets using the following 

databases: (i) Gene Ontology, (ii) Kyoto Encyclopedia of Genes and Genomes, (iii) Reactome, 

and (iv) WikiPathways63,64. Significant pathways and gene lists with a single gene or containing 
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more than 1,000 genes were discarded. Significance was defined as a p-value of less than 0.05. 

The g:Profiler algorithm applies a Bonferroni correction to the p-value for each pathway to 

correct for multiple testing.  

Next, we tested whether the same LBD polygenic risk scores were associated with 

cognitive impairment, as measured by the the Clinical Dementia Rating scale. This analysis was 

performed in the 214 LBD cases provided by the National Alzheimer’s Coordinating Center, as 

this was the only cohort for which the Clinical Dementia Rating scale had been collected at 

baseline evaluation. Genetic risk scores were z-transformed before separating all cases into 

quintiles based on their individual polygenic risk scores. A two-proportions z-test was performed 

to compare the proportion of severe LBD cases within the highest genetic risk score quintile 

group versus the lowest quintile.  

 

Data availability 

The individual-level sequence data for the resource genomes have been deposited at 

dbGaP (accession number: phs001963.v1.p1 NIA DementiaSeq). The GWAS summary statistics 

have been deposited in the GWAS catalog: https://www.ebi.ac.uk/gwas/home. eQTLGen data 

are available at https://www.eqtlgen.org/cis-eqtls.html. PsychENCODE QTL data are available 

at http://resource.psychencode.org/. Bulk-tissue RNA sequence data (GTEx version 8) are 

available at the Genotype-Tissue Expression consortium portal 

(https://www.gtexportal.org/home/). Human single-nucleus RNA sequence data are available at 

the Allen Institute for Brain Science portal (portal.brain-map.org/atlases-and-data/rnaseq/human-

mtg/smart-seq). Specificity values for the Allen Institute for Brain Science and GTEx data and 
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the code used to generate these values are openly available at: 

https://github.com.RHReynolds/MarkerGenes. 

 

Code availability 

Analyses were performed using open-source tools and code for analysis is available at the 

associated website of each software package. Genome sequence alignment and variant calling 

followed the implementation of the GATK Best Practices pipeline (https://github.com/gatk-

workflows/broad-prod-wgs-germline-snps-indels). Contamination rates were assessed using 

VerifyBamID (https://genome.sph.umich.edu/wiki/VerifyBamID). Quality control checks, 

association analyses, and conditional analyses were performed in PLINK2 (https://www.cog-

genomics.org/plink/2.0/). Data formatting and visualizations were performed in R (version 3.5.2; 

(https://www.r-project.org) using the following packages: MASS, tidyverse, stringr, ggrepel, 

data.table, viridis, ggplot2, gridExtra, grid. Imputation was performed using Eagle v.2.4 phasing 

(https://github.com/poruloh/Eagle). Meta-analysis was performed using METAL 

(https://genome.sph.umich.edu/wiki/METAL). Heritability analysis was performed using 

GRML-LDMS in GCTA (https://cnsgenomics.com/software/gcta). Rare variant analysis was 

performed using RVTESTS (v.2.1.0) (http://zhanxw.github.io/rvtests/) after annotating variant 

files in ANNOVAR (v.2018-04/16) (https://doc-

openbio.readthedocs.io/projects/annovar/en/latest/). 

Genetic risk score analyses were performed in PLINK 1.9 (https://www.cog-

genomics.org/plink). LBD summary statistics were converted from hg38 to hg19 using the R 

implementation of the LiftOver tool, which is available from the rtracklayer package 

(genome.sph.umich.edu/wiki/LiftOver). Colocalization analyses were performed in R-3.2 using 
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the packages coloc (v.4.0.1) (https://github.com/chr1swallace/coloc). Specificity values for the 

AIBS-derived dataset were generated using gene-level exonic reads and the 

‘generate.celltype.data’ function of the EWCE package 

(https://github.com/NathanSkene/EWCE). Polygenic risk scores were constructed using PRSice-

2 (v.2.1.1) (https://www.prsice.info). Pathway enrichment analysis was performed using the R 

package gprofiler2 (https://cran.r-project.org/web/packages/gprofiler2/vignettes/gprofiler2.html). 

  

https://github.com/NathanSkene/EWCE
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FIGURE LEGENDS  

Fig. 1 | Analysis workflow 

Schematic illustration of the analytical workflow.  

 

Fig. 2 | Genome-wide representation of common and rare variant associations in LBD 

Manhattan plots depicting a, the GWAS results (n = 2,591 cases and 4,027 controls; MAF >1%), 

b, the GWAS subanalysis of pathologically confirmed LBD cases only (n = 1,789) versus 

controls (n = 4,027), and c, gene-based genome-wide SKAT-O test associations of rare missense 

and loss-of-function variants (MAF ≤ 1%, MAC ≥ 3). The x-axis denotes the chromosomal 

position for all 22 autosomes in hg38, and the y-axis indicates the association p-values on a -

log10 scale. Each dot in a, and b, indicates a single-nucleotide variant or indel, while each dot in 

c, corresponds to a gene. Red dots highlight genome-wide significant signals, while suggestive 

variants are indicated with orange dots. A dashed line shows the conservative Bonferroni 

threshold for genome-wide significance. For a, and b, the gene with the closest proximity to the 

top variant at each significant locus is listed. Green font was used to highlight known LBD risk 

loci, while black font indicates novel association signals.  

 

Fig. 3 | Regional association plots for eQTL and LBD GWAS colocalizations 

Regional association plots for eQTLs (upper pane) and LBD GWAS signals (lower pane) in the 

regions surrounding a, TMEM175 (PPH4 = 0.99) and b, SNCA-AS1 (PPH4 = 0.96). The x-axis 

denotes the chromosomal position in hg19, and the y-axis indicates the association p-values on a 

-log10 scale.  
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Fig. 4 | Genetic risk scores from Alzheimer’s disease and Parkinson’s disease GWAS 

studies illustrate intersecting molecular genetic risk profiles with LBD 

Alzheimer’s disease and Parkinson’s disease genetic risk scores predict risk for LBD and 

highlight overlapping molecular risk profiles. a, Violin plots comparing z-transformed 

Alzheimer’s disease genetic risk score distributions in LBD cases, controls, and 100 random 

Alzheimer’s disease cases, while b, shows the z-transformed Parkinson’s disease genetic risk 

score distributions for LBD cases, controls, and 100 random Parkinson’s disease cases. The 

center line of each violin plot is the median, the box limits depict the interquartile range, and 

whiskers correspond to the 1.5x interquartile range. Abbreviations: GRS, genetic risk score; AD, 

Alzheimer’s disease; PD, Parkinson’s disease. 

 

Fig. 5 | Insights into LBD pathways based on polygenic risk score enrichment analysis 

Functional enrichment analyses of the LBD polygenic risk scores. The x-axis corresponds to the 

enrichment category in LBD cases compared to controls, and the y-axis shows the enrichment 

percentages of significant associations after multiple testing correction. The enrichment 

percentage refers to the percentage of input genes/variants that are within in a given pathway. 

Significant gene ontology (GO) enrichments for biological processes (BP, red), cellular functions 

(CC, green), molecular processes (MP, blue), and pathways from WikiPathways (WP, purple) 

are shown. The size of each respective dot indicates the p-values on a -log10 scale.  
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