172 research outputs found

    Regulatory Variation at Glypican-3 Underlies a Major Growth QTL in Mice

    Get PDF
    The genetic basis of variation in complex traits remains poorly understood, and few genes underlying variation have been identified. Previous work identified a quantitative trait locus (QTL) responsible for much of the response to selection on growth in mice, effecting a change in body mass of approximately 20%. By fine-mapping, we have resolved the location of this QTL to a 660-kb region containing only two genes of known function, Gpc3 and Gpc4, and two other putative genes of unknown function. There are no non-synonymous polymorphisms in any of these genes, indicating that the QTL affects gene regulation. Mice carrying the high-growth QTL allele have approximately 15% lower Gpc3 mRNA expression in kidney and liver, whereas expression differences at Gpc4 are non-significant. Expression profiles of the two other genes within the region are inconsistent with a factor responsible for a general effect on growth. Polymorphisms in the 3′ untranslated region of Gpc3 are strong candidates for the causal sequence variation. Gpc3 loss-of-function mutations in humans and mice cause overgrowth and developmental abnormalities. However, no deleterious side-effects were detected in our mice, indicating that genes involved in Mendelian diseases also contribute to complex trait variation. Furthermore, these findings show that small changes in gene expression can have substantial phenotypic effects

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Reversible zinc exchange between metallothionein and the estrogen receptor zinc finger

    Get PDF
    AbstractWe report here the first demonstration that reversible metal exchange occurs between metallothionein (MT) and full-length estrogen receptor (ER). Specific binding of ER to estrogen response element is inhibited in the presence of 40 μM thionein and restored by 120 μM zinc. Moreover, ER in metal-depleted nuclear extracts exhibits reduced DNA binding which can be restored by 140 μM native MT. Hence, thionein inhibits DNA binding by abstracting zinc from functional ER while native MT is capable of restoring binding to metal-depleted extracts by donating metal to ER. This indicates MT may be an important physiological regulator of intracellular zinc and/or other metals

    Heparan sulfate: lessons from knockout mice

    No full text
    corecore