795 research outputs found
What are the participants’ perspectives of taking melatonin for the treatment of nocturia in Multiple Sclerosis? -a qualitative study embedded within a double blind RCT
Background: Multiple Sclerosis (MS) is a chronic neurological disorder caused by neurodegeneration within the central nervous system. It results in impaired physical, cognitive and psychological functioning and can also lead to lower urinary tract symptoms including nocturia. While clinical trials have suggested an association between nocturia and melatonin secretion, to our knowledge, no qualitative research has been conducted on the experience of taking melatonin to treat nocturia in progressive MS within a clinical trial. Methods: 17 semi-structured qualitative interviews were conducted as part of a double-blind, randomised, placebo controlled, crossover, clinical trial with consenting adults with MS. Interviews explored participants’ experiences of nocturia associated with MS and their experience of taking melatonin as a trial treatment for nocturia versus a placebo. Data was analysed using a thematic analysis. Results: Themes on the experience of nocturia revealed participants’ understandings of nocturia, the impact it had on their night and increased daily fatigue. Themes on the intervention showed perceived improvements to nocturia, sleep and energy and negative effects including lethargy, a lack of significant change and physical side effects including vivid dreams.Conclusion: This qualitative exploration revealed an association between nocturia and increased levels of fatigue during the day by those with MS. However, perspectives towards the effectiveness of melatonin as a potential treatment varied as both placebo and melatonin were perceived as having very similar effects
Qualification and Issues with Space Flight Laser Systems and Components
The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 199O's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level
Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres
[EN] Hydrogenated amorphous silicon colloids of low surface area (<5 m(2)/g) are shown to exhibit complete in-vitro biodegradation into orthosilicic acid within 10-15 days at 37 degrees C. When converted into polycrystalline silicon colloids, by high temperature annealing in an inert atmosphere, microparticle solubility is dramatically reduced. The data suggests that amorphous silicon does not require nanoscale porosification for full in-vivo biodegradability. This has significant implications for using a-Si:H coatings for medical implants in general, and orthopedic implants in particular. The high sphericity and biodegradability of submicron particles may also confer advantages with regards to contrast agents for medical imaging.This work has been partially supported by the Spanish CICyT projects, FIS2009-07812, Consolider CSD2007-046, MAT2009-010350 and PROMETEO/2010/043.Shabir, Q.; Pokale, A.; Loni, A.; Johnson, DR.; Canham, L.; Fenollosa Esteve, R.; Tymczenko, MK.... (2011). Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres. Silicon. 3(4):173-176. https://doi.org/10.1007/s12633-011-9097-4S17317634Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) J Pharmaceutics 97:632–53Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Adv Drug Deliv Rev 60:1266–77O’Farrell N, Houlton A, Horrocks BR (2006) Int J Nanomedicine 1:451–72Canham LT (1995) Adv Mater 7:1037, PCT patent WO 97/06101,1999Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nature Mater 8:331–6Cullis AG, Canham LT, Calcott PDJ (1997) J Appl Phys 82:909–66Canham LT, Reeves CR (1996) Mat Res Soc Symp 414:189–90Edell DJ, Toi VV, McNeil VM, Clark LD (1992) IEEE Trans Biomed Eng 39:635–43Fenollosa R, Meseguer F, Tymczenko M (2008) Adv Mater 20:95Fenollosa R, Meseguer F, Tymczenko M, Spanish Patent P200701681, 2007Pell LE, Schricker AD, Mikulec FV, Korgel BA (2004) Langmuir 20:6546Xifré-Perez E, Fenollosa R, Meseguer F (2011) Opt Express 19:3455–63Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F (2010) J Mater Chem 20:5210Xifré-Pérez E, Domenech JD, Fenollosa R, Muñoz P, Capmany J, Meseguer F (2011) Opt Express 19–4:3185–92Rodriguez I, Fenollosa R, Meseguer F, Cosmetics & Toiletries 2010;42–49Ramiro-Manzano F, Fenollosa R, Xifré-Pérez E, Garín M, Meseguer F (2011) Adv Mater 23:3022–3025. doi: 10.1002/adma.201100986Iler RK (1979) Chemistry of silica: solubility, polymerization, colloid & surface properties & biochemistry. Wiley, New YorkTanaka K, Maruyama E, Shimado T, Okamoto H (1999) Amorphous silicon. Wiley, New York, NYPatterson AL (1939) Phys Rev 56:978–82Canham LT, Reeves CL, King DO, Branfield PJ, Gabb JG, Ward MC (1996) Adv Mater 8:850–2Iler RK In: Chemistry of silica: solubility, polymerization, colloid & surface properties &Biochemistry. Wiley, New York, NYFinnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbe CJ (2009) J Sol-Gel Technol 49:12–8Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–36Fan D, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2010) Nanoscale 1:354–61Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M (2011) Mol Imaging 10:56–
Fluctuation-Induced Interactions between Rods on a Membrane
We consider the interaction between two rods embedded in a fluctuating
surface. The modification of fluctuations by the rods leads to an attractive
long-range interaction between them. We consider fluctuations governed by
either surface tension (films) or bending rigidity (membranes). In both cases
the interaction falls off with the separation of the rods as . The
orientational part of the interaction is proportional to in the former case, and to in the latter, where and
are angles between the rods and the line joining them. These
interactions are somewhat reminiscent of dipolar forces and will tend to align
collections of such rods into chains.Comment: REVTEX, 14 pages, with 2 Postscript figure
The one-loop elastic coefficients for the Helfrich membrane in higher dimensions
Using a covariant geometric approach we obtain the effective bending
couplings for a 2-dimensional rigid membrane embedded into a
-dimensional Euclidean space. The Hamiltonian for the membrane has three
terms: The first one is quadratic in its mean extrinsic curvature. The second
one is proportional to its Gaussian curvature, and the last one is proportional
to its area. The results we obtain are in agreement with those finding that
thermal fluctuations soften the 2-dimensional membrane embedded into a
3-dimensional Euclidean space.Comment: 9 page
Monte-Carlo simulations of the recombination dynamics in porous silicon
A simple lattice model describing the recombination dynamics in visible light
emitting porous Silicon is presented. In the model, each occupied lattice site
represents a Si crystal of nanometer size. The disordered structure of porous
Silicon is modeled by modified random percolation networks in two and three
dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs
have been studied. Radiative and non-radiative processes as well as hopping
between nearest neighbor occupied sites are taken into account. By means of
extensive Monte-Carlo simulations, we show that the recombination dynamics in
porous Silicon is due to a dispersive diffusion of excitons in a disordered
arrangement of interconnected Si quantum dots. The simulated luminescence decay
for the excitons shows a stretched exponential lineshape while for uncorrelated
electron-hole pairs a power law decay is suggested. Our results successfully
account for the recombination dynamics recently observed in the experiments.
The present model is a prototype for a larger class of models describing
diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to
[email protected]
Effective Field Theory and the Gamow Shell Model: The 6He Halo Nucleus
We combine Halo/Cluster Effective Field Theory (H/CEFT) and the Gamow Shell
Model (GSM) to describe the ground state of as a three-body
halo system. We use two-body interactions for the neutron-alpha particle and
two-neutron pairs obtained from H/CEFT at leading order, with parameters
determined from scattering in the p and s channels, respectively.
The three-body dynamics of the system is solved using the GSM formalism, where
the continuum states are incorporated in the shell model valence space. We find
that in the absence of three-body forces the system collapses, since the
binding energy of the ground state diverges as cutoffs are increased. We show
that addition at leading order of a three-body force with a single parameter is
sufficient for proper renormalization and to fix the binding energy to its
experimental value
Hypersonic rugate filters based on porous silicon
Periodic solid state structures exhibit transmission stopbands for waves of certain frequencies. We demonstrate porous silicon based rugate filters with 40 dB rejection first-order stopbands for longitudinal acoustic waves at hypersonic frequencies and the predicted suppression of higher order bands
Self-Dual Bending Theory for Vesicles
We present a self-dual bending theory that may enable a better understanding
of highly nonlinear global behavior observed in biological vesicles. Adopting
this topological approach for spherical vesicles of revolution allows us to
describe them as frustrated sine-Gordon kinks. Finally, to illustrate an
application of our results, we consider a spherical vesicle globally distorted
by two polar latex beads.Comment: 10 pages, 3 figures, LaTeX2e+IOPar
- …