2,115 research outputs found
Real Zeros and Partitions without singleton blocks
We prove that the generating polynomials of partitions of an -element set
into non-singleton blocks, counted by the number of blocks, have real roots
only and we study the asymptotic behavior of the leftmost roots. We apply this
information to find the most likely number of blocks.Comment: 16 page
Effects of Boron Purity, Mg Stoichiometry and Carbon Substitution on Properties of Polycrystalline MgB
By synthesizing MgB using boron of different nominal purity we found
values of the residual resistivity ratio () from 4 to
20, which covers almost all values found in literature. To obtain high values
of , high purity reagents are necessary. With the isotopically pure boron
we obtained the highest 20 for the stoichiometric compound. We also
investigated MgB samples with 0.8 1.2. For the range
MgB up to MgB we found average values
of between 14 and 24. For smaller variations in stoichiometry () . All of our data point to the conclusion that high
() and low () are intrinsic
material properties associated with high purity MgB. In addition we have
performed initial work on optimizing the formation of carbon doped MgB
via the use of BC. Nearly single phase material can be formed by reaction
of nominal Mg(BC) for 24 hours at . The
for this composition is between and (depending on
criterion).Comment: accepted to Physica C, special MgB2 issu
TLK1B promotes repair of DSBs via its interaction with Rad9 and Asf1 Caroline Canfield, Justin Rains, and Arrigo De Benedetti
<p>Abstract</p> <p>Background</p> <p>The <it>Tousled-like kinases </it>are involved in chromatin assembly, DNA repair, transcription, and chromosome segregation. Previous evidence indicated that TLK1B can promote repair of plasmids with cohesive ends in vitro, but it was inferred that the mechanism was indirect and via chromatin assembly, mediated by its interaction with the chromatin assembly factor Asf1. We recently identified Rad9 as a substrate of TLK1B, and we presented evidence that the TLK1B-Rad9 interaction plays some role in DSB repair. Hence the relative contribution of Asf1 and Rad9 to the protective effect of TLK1B in DSBs repair is not known. Using an adeno-HO-mediated cleavage system in MM3MG cells, we previously showed that overexpression of either TLK1B or a kinase-dead protein (KD) promoted repair and the assembly of Rad9 in proximity of the DSB at early time points post-infection. This established that it is a chaperone activity of TLK1B and not directly the kinase activity that promotes recruitment of 9-1-1 to the DSB. However, the phosphorylation of Rad9(S328) by TLK1B appeared important for mediating a cell cycle checkpoint, and thus, this phosphorylation of Rad9 may have other effects on 9-1-1 functionality.</p> <p>Results</p> <p>Here we present direct evidence that TLK1B can promote repair of linearized plasmids with incompatible ends that require processing prior to ligation. Immunodepletion of Rad9 indicated that Rad9 was important for processing the ends preceding ligation, suggesting that the interaction of TLK1B with Rad9 is a key mediator for this type of repair. Ligation of incompatible ends also required DNA-PK, as addition of wortmannin or immunodepletion of Ku70 abrogated ligation. Depletion of Ku70 prevented the ligation of the plasmid but did not affect stimulation of the fill-in of the ends by added TLK1B, which was attributed to Rad9. From experiments with the HO-cleavage system, we now show that Rad17, a subunit of the "clamp loader", associates normally with the DSB in KD-overexpressing cells. However, the subsequent release of Rad17 and Rad9 upon repair of the DSB was significantly slower in these cells compared to controls or cells expressing wt-TLK1B.</p> <p>Conclusions</p> <p>TLKs play important roles in DNA repair, not only by modulation of chromatin assembly via Asf1, but also by a more direct function in processing the ends of a DSB via interaction with Rad9. Inhibition of Rad9 phosphorylation in KD-overexpressing cells may have consequences in signaling completion of the repair and cell cycle re-entry, and could explain a loss of viability from DSBs in these cells.</p
Determination of superconducting anisotropy from magnetization data on random powders as applied to LuNiBC, YNiBC and MgB
The recently discovered intermetallic superconductor MgB2 appears to have a
highly anisotopic upper critical field with Hc2(max)/Hc2(min} = \gamma > 5. In
order to determine the temperature dependence of both Hc2(max) and Hc2(min) we
propose a method of extracting the superconducting anisotropy from the
magnetization M(H,T) of randomly oriented powder samples. The method is based
on two features in dM/dT the onset of diamagnetism at Tc(max), that is commonly
associated with Hc2, and a kink in dM/dT at a lower temperature Tc(min).
Results for LuNi2B2C and YNi2B2C powders are in agreement with anisotropic Hc2
obtained from magneto-transport measurements on single crystals. Using this
method on four different types of MgB2 powder samples we are able to determine
Hc2(max)(T) and Hc2(min)(T) with \gamma \approx 6
Precise measurements of radio-frequency magnetic susceptibility in (anti)ferromagnetic materials
Dynamic magnetic susceptibility, , was studied in several intermetallic
materials exhibiting ferromagnetic, antiferromagnetic and metamagnetic
transitions. Precise measurements by using a 14 MHz tunnel diode oscillator
(TDO) allow detailed insight into the field and temperature dependence of
. In particular, local moment ferromagnets show a sharp peak in
near the Curie temperature, . The peak amplitude decreases and shifts to
higher temperatures with very small applied dc fields. Anisotropic measurements
of CeVSb show that this peak is present provided the magnetic easy axis is
aligned with the excitation field. In a striking contrast, small moment,
itinerant ferromagnets (i.e., ZrZn) show a broad maximum in that
responds differently to applied field. We believe that TDO measurements provide
a very sensitive way to distinguish between local and itinerant moment magnetic
orders. Local moment antiferromagnets do not show a peak at the N\'eel
temperature, , but only a sharp decrease of below due to the
loss of spin-disorder scattering changing the penetration depth of the ac
excitation field. Furthermore, we show that the TDO is capable of detecting
changes in spin order as well as metamagnetic transitions. Finally, critical
scaling of in the vicinity of is discussed in CeVSb and
CeAgSb
Magnetic field enhancement of superconductivity in ultra-narrow wires
We study the effect of an applied magnetic field on sub-10nm wide MoGe and Nb
superconducting wires. We find that magnetic fields can enhance the critical
supercurrent at low temperatures, and does so more strongly for narrower wires.
We conjecture that magnetic moments are present, but their pair-breaking
effect, active at lower magnetic fields, is suppressed by higher fields. The
corresponding microscopic theory, which we have developed, quantitatively
explains all experimental observations, and suggests that magnetic moments have
formed on the wire surfaces.Comment: 4 pages, 3 figures, 1 tabl
The loss of anisotropy in MgB2 with Sc substitution and its relationship with the critical temperature
The electrical conductivity anisotropy of the sigma-bands is calculated for
the (Mg,Sc)B2 system using a virtual crystal model. Our results reveal that
anisotropy drops with relatively little scandium content (< 30%); this
behaviour coincides with the lowering of Tc and the reduction of the Kohn
anomaly. This anisotropy loss is also found in the Al and C doped systems. In
this work it is argued that the anisotropy, or 2D character, of the sigma-bands
is an important parameter for the understanding of the high Tc found in MgB2
Jogos dramáticos na escola : vivências estruturantes com um grupo de jovens do ensino médio
Resumo não disponíve
Crystal electric field excitations in the quasicrystal approximant TbCd6 studied by inelastic neutron scattering
We have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramagnetic phase diverges as TN∼22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, B02O02, of the crystal electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [S. Jazbec et al., Phys. Rev. B 93, 054208 (2016)] indicating that the Tb moment is directed primarily along the unique local pseudofivefold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb0.05Y0.95Cd6 sample and that calculated using the CEF level scheme determined from the neutron measurements
- …