300 research outputs found

    Caracteres morfoanatómicos funcionales en especies xerofíticas de ambientes salinos

    Get PDF
    La comunidad halófila del Salitral de la Vidriera (Prov. Buenos Aires, Argentina) posee especies con diferentes caracteres morfoanatómicos funcionales; el objetivo de este estudio fue comparar este tipo de caracteres en cuatro especies, dos Asteraceae (Baccharis spartioides y B. tenella) y dos Frankeniaceae (Frankenia juniperoides y F. pulverulenta). Hojas y tallos fueron tratados con técnicas tradicionales para su estudio anatómico. Las hojas de Asteraceae y F. pulverulenta fueron anfestomáticas mientras que en F. juniperoides fueron hipostomáticas. Todas las especies presentaron tricomas y sólo las Frankeniaceae, glándulas de sal. El mesofilo fue isolateral en las Asteraceae y dorsiventral en las Frankeniaceae; el número de haces vasculares foliares fue variable. Los tallos de las Asteraceae tuvieron colénquima subepidérmico o parénquima que alternó con clorénquima, esta combinación de tejidos no fue encontrada en los tallos de las Frankeniaceae. Baccharis tenella presentó fibras en la corteza mientras que B. spartioides tuvo conductos esquizógenos. Los tallos de las cuatro especies mostraron un cilindro vascular completo y una médula parenquimática. Las diferencias anatómicas entre las especies seguramente contribuyen a la perpetuación y supervivencia de las mismas en la región de estudio.Halophytic community of Salitral de la Vidriera (Buenos Aires Province, Argentina) has species with different morphoanatomical functional traits; the aim of this study is to compare these traits in four species, two Asteraceae (B. spartioides and B. tenella) and two Frankeniaceae (F. juniperoides and F. pulverulenta). Leaves and stems were treated under traditional techniques for anatomical study. Leaves of Asteraceae and F. pulverulenta are amphistomatic while in F. juniperoides are hypostomatic. All species have trichomes and only the Frankeniaceae have salt glands. The mesophyll is isolateral in Asteraceae and dorsiventral in Frankeniaceae; the number of foliar vascular bundles is variably. The stems of Asteraceae have subepidermal collenchyma or parenchyma which alternates with chlorenchyma, this tissues combination is not found in the Frankeniaceae stems. B. tenella presents fibers in the cortex while B. spartioides has schysogenous ducts. The stems of the four species showed a complete vascular cylinder and parenchymatic pith. Anatomical differences between species are related to their differential competitive ability, reflected in opposing strategies of survival and perpetuation.Fil: Pérez Cuadra, Vanesa. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnológico Bahia Blanca. Instituto de Ciencias Biologicas y Biomedicas del Sur; ArgentinaFil: Cambi, V.. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentin

    Modeling molecular crystals formed by spin-active metal complexes by atom-atom potentials

    Full text link
    We apply the atom-atom potentials to molecular crystals of iron (II) complexes with bulky organic ligands. The crystals under study are formed by low-spin or high-spin molecules of Fe(phen)2_{2}(NCS)2_{2} (phen = 1,10-phenanthroline), Fe(btz)2_{2}(NCS)2_{2} (btz = 5,5^{\prime },6,6^{\prime}-tetrahydro-4\textit{H},4^{\prime}\textit{H}-2,2^{\prime }-bi-1,3-thiazine), and Fe(bpz)2_{2}(bipy) (bpz = dihydrobis(1-pyrazolil)borate, and bipy = 2,2^{\prime}-bipyridine). All molecular geometries are taken from the X-ray experimental data and assumed to be frozen. The unit cell dimensions and angles, positions of the centers of masses of molecules, and the orientations of molecules corresponding to the minimum energy at 1 atm and 1 GPa are calculated. The optimized crystal structures are in a good agreement with the experimental data. Sources of the residual discrepancies between the calculated and experimental structures are discussed. The intermolecular contributions to the enthalpy of the spin transitions are found to be comparable with its total experimental values. It demonstrates that the method of atom-atom potentials is very useful for modeling organometalic crystals undergoing the spin transitions

    Deuteron photo-disintegration with polarised photons in the energy range 30 - 50 MeV

    Full text link
    The reaction d(\vec\gamma,np) has been studied using the tagged and polarised LADON gamma ray beam at an energy 30 - 50 MeV to investigate the existence of narrow dibaryonic resonances recently suggested from the experimental measurements in a different laboratory. The beam was obtained by Compton back-scattering of laser light on the electrons of the storage ring ADONE. Photo-neutron yields were measured at five neutron angle \vartheta_n = 22, 55.5, 90, 125 and 157 degrees in the center of mass system.Our results do not support the existence of such resonances.Comment: 16 pages, Latex, 22 figures, 1 table. Nucl. Phys. A to appea

    On isovector meson exchange currents in the Bethe-Salpeter approach

    Get PDF
    We investigate the nonrelativistic reduction of the Bethe-Salpeter amplitude for the deuteron electrodisintegration near threshold energies. To this end, two assumptions have been used in the calculations: 1) the static approximation and 2) the one iteration approximation. Within these assumptions it is possible to recover the nonrelativistic result including a systematic extension to relativistic corrections. We find that the so-called pair current term can be constructed from the PP-wave contribution of the deuteron Bethe-Salpeter amplitude. The form factor that enters into the calculation of the pair current is constrained by the manifestly gauge independent matrix elements.Comment: 15 pages, incl. 3 figures, to be published Phys. Rev.

    cDC2 plasticity and acquisition of a DC3-like phenotype mediated by IL-6 and PGE2 in a patient-derived colorectal cancer organoids model

    Get PDF
    Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14(+) CD1c(+) CD163(+)) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches

    Parity conserving gamma asymmetry in n-p radiative capture

    Full text link
    The importance of n-p radiative capture, utilizing polarized cold neutrons, as a means of measuring the weak pion coupling constant is reviewed. Parity conserving processes of the form k_gamma*[s_n,k_n] can contribute to the s_n*k_gamma photon asymmetry in any such experiment, if the apparatus is not perfectly symmetric. For an incident laboratory neutron energy of 0.003 eV a value of A^{PC}_{gamma}=0.67*10^{-8} is obtained for two different potential models (Argonne AV14 and Nijmegen Reid93). Serving as an extreme test case, the Reid soft core potential yields 0.61*10^{-8}, close to the result of the contemporary forces. Implications for extracting the weak pion coupling constant and for monitoring the beam polarization are discussed.Comment: 8 page

    Effect of Differential N-linked and O-linked Mannosylation on Recognition of Fungal Antigens by Dendritic Cells

    Get PDF
    BACKGROUND. An experimental approach for improving vaccine efficacy involves targeting antigens to mannose receptors (MRs) on dendritic cells (DCs) and other professional antigen presenting cells. Previously, we demonstrated that mannosylated Pichia pastoris-derived recombinant proteins exhibited increased immunogenicity compared to proteins lacking mannosylation. In order to gain insight into the mechanisms responsible for this observation, the present study examined the cellular uptake of the mannosylated and deglycosylated recombinant proteins. METHODOLOGY/PRINCIPAL FINDINGS. Utilizing transfected cell lines, roles for the macrophage mannose receptor (MMR, CD206) and DC-SIGN (CD209) in the recognition of the mannosylated, but not deglycosylated, antigens were demonstrated. The uptake of mannosylated antigens into murine bone marrow-derived DCs (BMDCs) was inhibited by yeast mannans (YMs), suggesting a mannose-specific C-type lectin receptor-dependent process, while the uptake of deglycosylated antigens remained unaffected. In particular, antigens with both N-linked and extensive O-linked mannosylation showed the highest binding and uptake by BMDCs. Finally, confocal microscopy studies revealed that both mannosylated and deglycosylated P. pastoris-derived recombinant proteins localized in MHC class II+ compartments within BMDCs. CONCLUSIONS/SIGNIFICANCE. Taken together with our previous results, these data suggest that increased uptake by mannose-specific C-type lectin receptors is the major mechanism responsible for the enhanced antigenicity seen with mannosylated proteins. These findings have important implications for vaccine design and contribute to our understanding of how glycosylation affects the immune response to eukaryotic pathogens.National Institutes of Health (RO1 AI25780, RO1 AI37532

    Quantum Dots for Tracking Dendritic Cells and Priming an Immune Response In Vitro and In Vivo

    Get PDF
    Dendritic cells (DCs) play a key role in initiating adaptive immune response by presenting antigen to T cells in lymphoid organs. Here, we investigate the potential of quantum dots (QDs) as fluorescent nanoparticles for in vitro and in vivo imaging of DCs, and as a particle-based antigen-delivery system to enhance DC-mediated immune responses. We used confocal, two-photon, and electron microscopies to visualize QD uptake into DCs and compared CD69 expression, T cell proliferation, and IFN-γ production by DO11.10 and OT-II T cells in vivo in response to free antigen or antigen-conjugated to QDs. CD11c+ DCs avidly and preferentially endocytosed QDs, initially into small vesicles near the plasma membrane by an actin-dependent mechanism. Within 10 min DCs contained vesicles of varying size, motion, and brightness distributed throughout the cytoplasm. At later times, endocytosed QDs were compartmentalized inside lysosomes. LPS-induced maturation of DCs reduced the rate of endocytosis and the proportion of cells taking up QDs. Following subcutaneous injection of QDs in an adjuvant depot, DCs that had endocytosed QDs were visualized up to 400 µm deep within draining lymph nodes. When antigen-conjugated QDs were used, T cells formed stable clusters in contact with DCs. Antigen-conjugated QDs induced CD69 expression, T cell proliferation, and IFN-γ production in vivo with greater efficiency than equivalent amounts of free antigen. These results establish QDs as a versatile platform for immunoimaging of dendritic cells and as an efficient nanoparticle-based antigen delivery system for priming an immune response

    The Achilles Heel of the Trojan Horse Model of HIV-1 trans-Infection

    Get PDF
    To ensure their survival, microbial pathogens have evolved diverse strategies to subvert host immune defenses. The human retrovirus HIV-1 has been proposed to hijack the natural endocytic function of dendritic cells (DCs) to infect interacting CD4 T cells in a process termed trans-infection. Although DCs can be directly infected by certain strains of HIV-1, productive infection of DCs is not required during trans-infection; instead, DCs capture and internalize infectious HIV-1 virions in vesicles for later transmission to CD4 T cells via vesicular exocytosis across the infectious synapse. This model of sequential endocytosis and exocytosis of intact HIV-1 virions has been dubbed the “Trojan horse” model of HIV-1 trans-infection. While this model gained rapid favor as a strong example of how a pathogen exploits the natural properties of its cellular host, our recent studies challenge this model by showing that the vast majority of virions transmitted in trans originate from the plasma membrane rather than from intracellular vesicles. This review traces the experimental lines of evidence that have contributed to what we view as the “rise and decline” of the Trojan horse model of HIV-1 trans-infection
    corecore