160 research outputs found

    Int J Tuberc Lung Dis

    Get PDF
    BackgroundTherapeutic effects of antiretroviral therapy (ART) in patients with multidrug resistant tuberculosis (MDR-TB) and HIV infection have not been established.ObjectiveThe objective of this study was to assess therapeutic outcomes of ART integration with MDR-TB treatment.DesignA subgroup of MDR-TB patients from the SAPiT study, a randomized controlled trial, conducted in an out-patient clinic in Durban, South Africa from 2008\u20132012MethodsClinical outcomes at 18 months were compared in patients randomized to receive ART within 12 weeks of standard first-line tuberculosis treatment initiation with those who commenced ART after completing tuberculosis treatment.ResultsMycobacterium tuberculosis drug susceptibility was available in 489 (76%) of 642 SAPiT patients; 23 had MDR-TB, 14 in the integrated treatment arm and 9 in the sequential treatment arm. At 18 months, the mortality rate was 11.9/100 person-years (95% confidence interval (CI): 1.4\u201342.8) in the combined integrated treatment arm and 56.0/100 person-years (95%CI: 18.2\u2013130.8) in the sequential treatment arm, (Hazard Ratio adjusted for baseline CD4 count and whether MDR-TB treatment was initiated: 0.14; 95% CI: 0.02\u20130.94; P=0.04).ConclusionDespite the small sample size, the 86% reduction in mortality due to early initiation of ART in MDR-TB patients was statistically significant.D43TW00231/TW/FIC NIH HHS/United StatesD43 TW000231/TW/FIC NIH HHS/United States5U26PS001350/PS/NCHHSTP CDC HHS/United StatesU19 AI051794/AI/NIAID NIH HHS/United StatesU2G PS001350/PS/NCHHSTP CDC HHS/United StatesPEPFAR/United States2016-02-29T00:00:00Z24429305PMC47700138583vault:1580

    Nutraceutical-Based Nanoformulations for Breast and Ovarian Cancer Treatment

    Get PDF
    Different strategies have been investigated for a more satisfactory treatment of advanced breast cancer, including the adjuvant use of omega-3 polyunsaturated fatty acids (PUFAs). These nutritional compounds have been shown to possess potent anti-inflammatory and antiangiogenic activities, the capacity to affect transduction pathways/receptors involved in cell growth and to reprogram tumor microenvironment. Omega-3 PUFA-containing nanoformulations designed for drug delivery in breast cancer were shown to potentiate the effects of enclosed drugs, enhance drug delivery to target sites, and minimize drug-induced side effects. We have critically analyzed here the results of the most recent studies investigating the effects of omega-3 PUFA-containing nanoformulations in breast cancer. The anti-neoplastic efficacy of omega-3 PUFAs has also been convincingly demonstrated by using preclinical in vivo models of ovarian cancer. The results obtained are critically analyzed here and seem to provide a sufficient rationale to move to still lacking interventional clinical trials, as well as to evaluate possible advantages of enclosing omega-3 PUFAs to drug-delivery nanosystems for ovarian cancer. Future perspectives in this area are also provided

    New insights on the effects of dietary omega‐3 fatty acids on impaired skin healing in diabetes and chronic venous leg ulcers

    Get PDF
    Long‐chain Omega‐3 polyunsaturated fatty acids (Omega‐3 PUFAs) are widely recognized as powerful negative regulators of acute inflammation. However, the precise role exerted by these dietary compounds during the healing process is still largely unknown, and there is increasing interest in understanding their specific effects on the implicated cells/molecular factors. Particular attention is being focused also on their potential clinical application in chronic pathologies characterized by delayed and impaired healing, such as diabetes and vascular diseases in lower limbs. On these bases, we firstly summarized the current knowledge on wound healing (WH) in skin, both in normal conditions and in the setting of these two pathologies, with particular attention to the cellular and molecular mechanisms involved. Then, we critically reviewed the outcomes of recent research papers investigating the activity exerted by Omega‐3 PUFAs and their bioactive metabolites in the regulation of WH in patients with diabetes or venous insufficiency and showing chronic recalcitrant ulcers. We especially focused on recent studies investigating the mechanisms through which these compounds may act. Considerations on the optimal dietary doses are also reported, and, finally, possible future perspectives in this area are suggested

    Anticancer properties of propofol-docosahexaenoate and propofol-eicosapentaenoate on breast cancer cells

    Get PDF
    INTRODUCTION: Epidemiological evidence strongly links fish oil, which is rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), with low incidences of several types of cancer. The inhibitory effects of omega-3 polyunsaturated fatty acids on cancer development and progression are supported by studies with cultured cells and animal models. Propofol (2,6-diisopropylphenol) is the most extensively used general anesthetic–sedative agent employed today and is nontoxic to humans at high levels (50 μg/ml). Clinically relevant concentrations of propofol (3 to 8 μg/ml; 20 to 50 μM) have also been reported to have anticancer activities. The present study describes the synthesis, purification, characterization and evaluation of two novel anticancer conjugates, propofol-docosahexaenoate (propofol-DHA) and propofol-eicosapentaenoate (propofol-EPA). METHODS: The conjugates linking an omega-3 fatty acid, either DHA or EPA, with propofol were synthesized and tested for their effects on migration, adhesion and apoptosis on MDA-MB-231 breast cancer cells. RESULTS: At low concentrations (25 μM), DHA, EPA or propofol alone or in combination had minimal effect on cell adhesion to vitronectin, cell migration against serum and the induction of apoptosis (only 5 to 15% of the cells became apoptotic). In contrast, the propofol-DHA or propofol-EPA conjugates significantly inhibited cell adhesion (15 to 30%) and migration (about 50%) and induced apoptosis (about 40%) in breast cancer cells. CONCLUSION: These results suggest that the novel propofol-DHA and propofol-EPA conjugates reported here may be useful for the treatment of breast cancer

    Consumption of an omega-3 fatty acids product, INCELL AAFA™, reduced side-effects of CPT-11 (irinotecan) in mice

    Get PDF
    INCELL AAFA™, an omega-3 polyunsaturated fatty acid product containing a high concentration of long chain fatty acids, was tested for its ability to ameliorate the harmful side effects of CPT-11 chemotherapy including: leukopenia, anaemia, asthenia, weight loss and liver involvement. Four groups of mice were fed an AIN-76 diet modified to contain: 10% w/w corn oil (CO), 0% AAFA™; 9% CO, 1% AAFA™; 8% CO, 2% AAFA™; or 7% CO, 3% AAFA™. After 2 weeks on the diets, half of the mice received CPT-11 chemotherapy (60 mg kg−1 q 4 days, i.v.) the rest of the mice received vehicle for 2 weeks. It was found that 2% AAFA™ in the diet of the CPT-11 treated mice: decreased apoptotic figures in the duodenal crypts; markedly suppressed the inflammatory eicosanoid, prostaglandin E2 in the liver; prevented liver hypertrophy; improved white blood cell counts; significantly increased red blood cell counts; decreased numbers of CPT-11 induced immature red blood cell and micronuclei in red blood cells of the peripheral blood; increased eicosapentaenoic acid and docosahexaenoic acid in liver cell membranes and maintained normal grooming behaviour. Thus 2% AAFA™ in the diet reduced the side effects of CPT-11 treatment in mice

    Why High-Performance Modelling and Simulation for Big Data Applications Matters

    Get PDF
    Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned

    A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer is a collection of diseases in which molecular phenotypes can act as both indicators and mediators of therapeutic strategy. Therefore, candidate therapeutics must be assessed in the context of multiple cell lines with known molecular phenotypes. Docosahexaenoic acid (DHA) and curcumin (CCM) are dietary compounds known to antagonize breast cancer cell proliferation. We report that these compounds in combination exert a variable antiproliferative effect across multiple breast cell lines, which is synergistic in SK-BR-3 cells and triggers cell signaling events not predicted by the activity of either compound alone.</p> <p>Methods</p> <p>Dose response curves for CCM and DHA were generated for five breast cell lines. Effects of the DHA+ CCM combination on cell proliferation were evaluated using varying concentrations, at a fixed ratio, of CCM and DHA based on their individual ED<sub>50</sub>. Detection of synergy was performed using nonlinear regression of a sigmoid dose response model and Combination Index approaches. Cell molecular network responses were investigated through whole genome microarray analysis of transcript level changes. Gene expression results were validated by RT-PCR, and western blot analysis was performed for potential signaling mediators. Cellular curcumin uptake, with and without DHA, was analyzed via flow cytometry and HPLC.</p> <p>Results</p> <p>CCM+DHA had an antiproliferative effect in SK-BR-3, MDA-MB-231, MDA-MB-361, MCF7 and MCF10AT cells. The effect was synergistic for SK-BR-3 (ER<sup>- </sup>PR<sup>- </sup>Her2<sup>+</sup>) relative to the two compounds individually. A whole genome microarray approach was used to investigate changes in gene expression for the synergistic effects of CCM+DHA in SK-BR-3 cells lines. CCM+DHA triggered transcript-level responses, in disease-relevant functional categories, that were largely non-overlapping with changes caused by CCM or DHA individually. Genes involved in cell cycle arrest, apoptosis, inhibition of metastasis, and cell adhesion were upregulated, whereas genes involved in cancer development and progression, metastasis, and cell cycle progression were downregulated. Cellular pools of PPARγ and phospho-p53 were increased by CCM+DHA relative to either compound alone. DHA enhanced cellular uptake of CCM in SK-BR-3 cells without significantly enhancing CCM uptake in other cell lines.</p> <p>Conclusions</p> <p>The combination of DHA and CCM is potentially a dietary supplemental treatment for some breast cancers, likely dependent upon molecular phenotype. DHA enhancement of cellular curcumin uptake is one potential mechanism for observed synergy in SK-BR-3 cells; however, transcriptomic data show that the antiproliferation synergy accompanies many signaling events unique to the combined presence of the two compounds.</p
    corecore