476 research outputs found

    Larger and denser: an optimal design for surface grids of EMG electrodes to identify greater and more representative samples of motor units

    Get PDF
    The spinal motor neurons are the only neural cells whose individual activity can be non-invasively identified. This is usually done using grids of surface electromyographic (EMG) electrodes and source separation algorithms; an approach called EMG decomposition. In this study, we combined computational and experimental analyses to assess how the design parameters of grids of electrodes influence the number and the properties of the identified motor units. We first computed the percentage of motor units that could be theoretically discriminated within a pool of 200 simulated motor units when decomposing EMG signals recorded with grids of various sizes and interelectrode distances (IED). Increasing the density, the number of electrodes, and the size of the grids, increased the number of motor units that our decomposition algorithm could theoretically discriminate, i.e., up to 83.5% of the simulated pool (range across conditions: 30.5-83.5%). We then identified motor units from experimental EMG signals recorded in six participants with grids of various sizes (range: 2-36 cm2) and IED (range: 4-16 mm). The configuration with the largest number of electrodes and the shortest IED maximized the number of identified motor units (56±14; range: 39-79) and the percentage of early recruited motor units within these samples (29±14%). Finally, the number of identified motor units further increased with a prototyped grid of 256 electrodes and an IED of 2 mm. Taken together, our results showed that larger and denser surface grids of electrodes allow to identify a more representative pool of motor units than currently reported in experimental studies.Significance StatementThe application of source separation methods to multi-channel EMG signals recorded with grids of electrodes enables users to accurately identify the activity of individual motor units. However, the design parameters of these grids have never been discussed. They are usually arbitrarily fixed, often based on commercial availability. Here, we showed that using larger and denser grids of electrodes than conventionally proposed drastically increases the number of identified motor units. The samples of identified units are more balanced between early- and late-recruited motor units. Thus, these grids provide a more representative sampling of the active motor unit population. Gathering large datasets of motor units using large and dense grids will impact the study of motor control, neuromuscular modelling, and human-machine interfacing

    Capillary Electrophoresis Separation of Protein Composition of γ-Irradiated Food Pathogens Listeria monocytogenes and Staphylococcus aureus

    Get PDF
    which were previously treated at different irradiation doses., one protein (50 S ribosomal protein) with the MW of 16.3 kDa was significantly decreased at a low dose of irradiation treatment and the other protein (transcriptional regulator CtsR) with the MW of 17.7 kDa was increased significantly (P≤0.05) at all doses of irradiation treatment compared to control.. The research further confirmed that capillary electrophoresis is a useful method to separate and analyse proteins expression which may be related to the resistance or sensitivity of food pathogens to γ-irradiation

    An augmented correlation framework for the estimation of tumour translational and rotational motion during external beam radiotherapy treatments using intermittent monoscopic x-ray imaging and an external respiratory signal

    Get PDF
    © 2018 Institute of Physics and Engineering in Medicine. Increasing evidence shows that intrafraction tumour motion monitoring must include both six degrees of freedom (6DoF): 3D translations and 3D rotations. Existing real-time algorithms for 6DoF target motion estimation require continuous intrafraction fluoroscopic imaging at high frequency, thereby exposing patients to additional high imaging dose. This paper presents the first method capable of 6DoF motion monitoring using intermittent 2D kV imaging and a continuous external respiratory signal. Our approach is to optimise a state-augmented linear correlation model between an external signal and internal 6DoF motion. In standard treatments, the model can be built using information obtained during pre-treatment cone beam CT (CBCT). Real-time 6DoF tumor motion can then be estimated using just the external signal. Intermittent intrafraction kV images are used to update the model parameters, accounting for changes in correlation and baseline shifts. The method was evaluated in silico using data from 6 lung SABR patients, with the internal tumour motion recorded with electromagnetic beacons and the external signal from a bellows belt. Projection images from CBCT (10 Hz) and intermittent kV images were simulated by projecting the 3D Calypso beacon positions onto an imager. IMRT and VMAT treatments were simulated with increasing imaging update intervals: 0.1 s, 1 s, 3 s, 10 s and 30 s. For all the tested clinical scenarios, translational motion estimates with our method had sub-mm accuracy (mean) and precision (standard deviation) while rotational motion estimates were accurate to < and precise to . Motion estimation errors increased as the imaging update interval increased. With the largest imaging update interval (30 s), the errors were mm, mm and mm for translation in the left-right, superior-inferior and anterior-posterior directions, respectively, and , and for rotation around the aforementioned axes for both VMAT and IMRT treatments. In conclusion, we developed and evaluated a novel method for highly accurate real-time 6DoF motion monitoring on a standard linear accelerator without requiring continuous kV imaging. The proposed method achieved sub-mm and sub-degree accuracy on a lung cancer patient dataset

    Technical Note: In silico and experimental evaluation of two leaf-fitting algorithms for MLC tracking based on exposure error and plan complexity.

    Get PDF
    PURPOSE: Multileaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and pelvic motion during radiotherapy. The purpose of this work was to characterize the performance of two MLC leaf-fitting algorithms, direct optimization and piecewise optimization, for real-time motion compensation with different plan complexity and tumor trajectories. METHODS: To test the algorithms, both in silico and phantom experiments were performed. The phantom experiments were performed on a Trilogy Varian linac and a HexaMotion programmable motion platform. High and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC leaf-fitting algorithms, the plans were run with their corresponding patient trajectories. To compare algorithms, the average exposure errors, i.e., the difference in shape between ideal and fitted MLC leaves by the algorithm, plan complexity and system latency of each experiment were calculated. RESULTS: Comparison of exposure errors for the in silico and phantom experiments showed minor differences between the two algorithms. The average exposure errors for in silico experiments with low/high plan complexity were 0.66/0.88 cm2 for direct optimization and 0.66/0.88 cm2 for piecewise optimization, respectively. The average exposure errors for the phantom experiments with low/high plan complexity were 0.73/1.02 cm2 for direct and 0.73/1.02 cm2 for piecewise optimization, respectively. The measured latency for the direct optimization was 226 ± 10 ms and for the piecewise algorithm was 228 ± 10 ms. In silico and phantom exposure errors quantified for each treatment plan demonstrated that the exposure errors from the high plan complexity (0.96 cm2 mean, 2.88 cm2 95% percentile) were all significantly different from the low plan complexity (0.70 cm2 mean, 2.18 cm2 95% percentile) (P < 0.001, two-tailed, Mann-Whitney statistical test). CONCLUSIONS: The comparison between the two leaf-fitting algorithms demonstrated no significant differences in exposure errors, neither in silico nor with phantom experiments. This study revealed that plan complexity impacts the overall exposure errors significantly more than the difference between the algorithms

    Aluminum-, Calcium- And Titanium-Rich Oxide Stardust In Ordinary Chondrite Meteorites

    Full text link
    We report isotopic data for a total of 96 presolar oxide grains found in residues of several unequilibrated ordinary chondrite meteorites. Identified grain types include Al2O3, MgAl2O4, hibonite (CaAl12O19) and Ti oxide. This work greatly increases the presolar hibonite database, and is the first report of presolar Ti oxide. O-isotopic compositions of the grains span previously observed ranges and indicate an origin in red giant and asymptotic giant branch (AGB) stars of low mass (<2.5 MSun) for most grains. Cool bottom processing in the parent AGB stars is required to explain isotopic compositions of many grains. Potassium-41 enrichments in hibonite grains are attributable to in situ decay of now-extinct 41Ca. Inferred initial 41Ca/40Ca ratios are in good agreement with model predictions for low-mass AGB star envelopes, provided that ionization suppresses 41Ca decay. Stable Mg and Ca isotopic ratios of most of the hibonite grains reflect primarily the initial compositions of the parent stars and are generally consistent with expectations for Galactic chemical evolution, but require some local interstellar chemical inhomogeneity. Very high 17O/16O or 25Mg/24Mg ratios suggest an origin for some grains in binary star systems where mass transfer from an evolved companion has altered the parent star compositions. A supernova origin for the hitherto enigmatic 18O-rich Group 4 grains is strongly supported by multi-element isotopic data for two grains. The Group 4 data are consistent with an origin in a single supernova in which variable amounts of material from the deep 16O-rich interior mixed with a unique end-member mixture of the outer layers. The Ti oxide grains primarily formed in low-mass AGB stars. They are smaller and rarer than presolar Al2O3, reflecting the lower abundance of Ti than Al in AGB envelopes.Comment: Accepted for publication in ApJ; 47 pages, 13 figure

    Perceived Hospital Preparedness Is Negatively Associated With Pandemic-Induced Psychological Vulnerability in Primary Care Employees: A Multicentre Cross-Sectional Observational Study.

    Get PDF
    The COVID-19 pandemic had a profound negative impact on the psychological wellbeing of healthcare providers (HPs), but little is known about the factors that positively predict mental health of primary care staff during these dire situations. We conducted an online questionnaire survey among 702 emergency department workers across 10 hospitals in Switzerland and Belgium following the first COVID-19 wave in 2020, to explore their psychological vulnerability, perceived concerns, self-reported impact and level of pandemic workplace preparedness. Participants included physicians, nurses, psychologists and nondirect care employees (administrative staff). We tested for predictors of psychological vulnerability through both an exploratory cross-correlation with rigorous correction for multiple comparisons and model-based path modelling. Findings showed that the self-reported impact of COVID-19 at work, concerns about contracting COVID-19 at work, and a lack of personal protective equipment were strong positive predictors of Depression, Anxiety, and Stress, and low Resilience. Instead, knowledge of the degree of preparedness of the hospital/department, especially in the presence of a predetermined contingency plan for an epidemic and training sessions about protective measures, showed the opposite effect, and were associated with lower psychological vulnerability. All effects were confirmed after accounting for confounding factors related to gender, age, geographical location and the role played by HPs in the hospital/department. Difficult working conditions during the pandemic had a major impact on the psychological wellbeing of emergency department HPs, but this effect might have been lessened if they had been informed about adequate measures for minimizing the risk of exposure

    Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring-Guided Gating for Prostate Cancer Radiation Therapy.

    Get PDF
    PURPOSE: Kilovoltage intrafraction monitoring (KIM) is a new real-time 3-dimensional image guidance method. Unlike previous real-time image guidance methods, KIM uses a standard linear accelerator without any additional equipment needed. The first prospective clinical trial of KIM is underway for prostate cancer radiation therapy. In this paper we report on the measured motion accuracy and precision using real-time KIM-guided gating. METHODS AND MATERIALS: Imaging and motion information from the first 200 fractions from 6 patient prostate cancer radiation therapy volumetric modulated arc therapy treatments were analyzed. A 3-mm/5-second action threshold was used to trigger a gating event where the beam is paused and the couch position adjusted to realign the prostate to the treatment isocenter. To quantify the in vivo accuracy and precision, KIM was compared with simultaneously acquired kV/MV triangulation for 187 fractions. RESULTS: KIM was successfully used in 197 of 200 fractions. Gating events occurred in 29 fractions (14.5%). In these 29 fractions, the percentage of beam-on time, the prostate displacement was >3 mm from the isocenter position, reduced from 73% without KIM to 24% with KIM-guided gating. Displacements >5 mm were reduced from 16% without KIM to 0% with KIM. The KIM accuracy was measured at <0.3 mm in all 3 dimensions. The KIM precision was <0.6 mm in all 3 dimensions. CONCLUSIONS: Clinical implementation of real-time KIM image guidance combined with gating for prostate cancer eliminates large prostate displacements during treatment delivery. Both in vivo KIM accuracy and precision are well below 1 mm
    corecore