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Summary 

We developed a computational model of a muscle actuator 

composed of in-parallel Hill-type models of motor units 

(MUs) using as inputs the motor unit discharge times obtained 

from decomposed high-density surface EMG (HDEMG) 

signals. We then used the model to simulate isometric muscle 

contractions. This work extends the traditional Hill-type 

muscle models and enables further modelling possibilities 

such as HDEMG-based simulations and controllers. 

Introduction 

In computational muscle modelling, whole muscle dynamics 

are mostly described as a single functional MU modelled with 

a Hill-type model. This assumption requires lumping the MU 

neural contributions to a single control [1], that is dissociated 

from the physiological control of muscle forces, which limits 

the range of uses of these models. Recent advances in the 

acquisition and decomposition of HDEMG signals [2] open 

new possibilities for the definition and use of Hill-type models 

at the MU scale. In this work, we propose a multi-MU Hill-

type muscle model driven by experimental motoneuron 

discharge times obtained from HDEMG recordings [2]. 

Methods 

The time-histories of the discharge times 𝑠𝑝𝑖(𝑡) of 32 

identified MUs were obtained from blind source separation of 

HDEMG signals acquired during an isometric trapezoidal 

contraction up to 35% of the maximum force of the tibialis 

anterior (TA) muscle of a healthy subject (male, 27 years old, 

189 cm, 77 kg) [2]. The whole muscle (Figure 1A) is modelled 

as 32 in-parallel Hill-type MU actuators. The excitation and 

activation dynamics of each MU are modelled using an 

updated Hatze’s model [3] with parameters recalibrated using 

mammalian data. In this model, each neural discharge time 

𝑠𝑝𝑖(𝑡) fires a model of neural action potential which drives 

two cascading second-order differential equations of the 

dynamics of the muscle action potential (MAP) (excitation 

dynamics) and of the length-dependent calcium concentration 

transients in the sarcolemma (activation dynamics). The 

active state obtained from an adapted calcium-dependent 8-

state model of cross-bridge attachment dynamics [4] scales a 

normalized isometric force-length relationship yielding the ith 

MU normalized force. The following simplifying assumptions 

were made. The 32 identified MUs are representative of the 

population of recruited MUs at 35% maximum force and an 

exponential frequency distribution of the MU-specific 

maximum forces was considered. Accounting for the variation 

of optimal fibre lengths (𝑙0
𝑀) with recruitment threshold, all 

MU dynamics are sub-𝑙0
𝑀 and passive parallel forces can be 

neglected. The contribution of the short tendon of the TA is 

for now neglected. Finally, the 32 output MU forces are 

linearly summed to yield a whole muscle force profile 𝐹𝑀(𝑡). 

Results and Discussion 

The time profiles of the MAPs 𝑢𝑖(𝑡) and active state 𝑎𝑖(𝑡) of 

each ith MU (Figure 1A) could be simulated from the HDEMG 

discharge times 𝑠𝑝𝑖(𝑡), yielding a simulated whole muscle 

force 𝐹𝑀(𝑡) (red trace, Figure 1B) resembling experimental 

results (green trace, Figure 1B). Delays in force onset will be 

corrected by identifying or simulating the dynamics of 

supplementary representative MUs. 

 

Figure 1: (A) Cascading dynamics of the 32-MU muscle model.  

B) Discharge times of the 32 identified MUs. Experimental 

transducer force (green). Simulated whole muscle force (red). 

Conclusions 

This new muscle modelling approach enables the use of 

decomposed HDEMG signals with Hill-type muscle 

simulations. Defining a multi-MU muscle actuator with MU-

specific properties clearly separates excitation and activation 

dynamics. Ongoing work will consolidate the current model 

by mapping the sample of identified MUs to an estimate of the 

entire population of active MUs, reducing the number of 

simplifications and using ad hoc experimental data for neural 

inputs and model calibration and validation.  
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