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Abstract 38 

The spinal motor neurons are the only neural cells whose individual activity can be non-invasively 39 

identified. This is usually done using grids of surface electromyographic (EMG) electrodes and source 40 

separation algorithms; an approach called EMG decomposition. In this study, we combined 41 

computational and experimental analyses to assess how the design parameters of grids of electrodes 42 

influence the number and the properties of the identified motor units. We first computed the 43 

percentage of motor units that could be theoretically discriminated within a pool of 200 simulated 44 

motor units when decomposing EMG signals recorded with grids of various sizes and interelectrode 45 

distances (IED). Increasing the density, the number of electrodes, and the size of the grids, increased 46 

the number of motor units that our decomposition algorithm could theoretically discriminate, i.e., up to 47 

83.5% of the simulated pool (range across conditions: 30.5-83.5%). We then identified motor units 48 

from experimental EMG signals recorded in six participants with grids of various sizes (range: 2-36 49 

cm2) and IED (range: 4-16 mm). The configuration with the largest number of electrodes and the 50 

shortest IED maximized the number of identified motor units (56±14; range: 39-79) and the 51 

percentage of early recruited motor units within these samples (29±14%). Finally, the number of 52 

identified motor units further increased with a prototyped grid of 256 electrodes and an IED of 2 mm. 53 

Taken together, our results showed that larger and denser surface grids of electrodes allow to identify a 54 

more representative pool of motor units than currently reported in experimental studies.  55 

 56 

Significance statement 57 

The application of source separation methods to multi-channel EMG signals recorded with grids of 58 

electrodes enables users to accurately identify the activity of individual motor units. However, the 59 

design parameters of these grids have never been discussed. They are usually arbitrarily fixed, often 60 

based on commercial availability. Here, we showed that using larger and denser grids of electrodes 61 

than conventionally proposed drastically increases the number of identified motor units. The samples 62 

of identified units are more balanced between early- and late-recruited motor units. Thus, these grids 63 

provide a more representative sampling of the active motor unit population. Gathering large datasets 64 

of motor units using large and dense grids will impact the study of motor control, neuromuscular 65 

modelling, and human-machine interfacing. 66 

  67 
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Introduction 68 

Decoding the neural control of natural behaviors relies on the identification of the discharge activity of 69 

individual neural cells. Classically, arrays of electrodes are implanted close to the cells to record their 70 

electrical activity. The application of algorithms that separate the simultaneous and overlapping 71 

activity of these cells has enabled researchers to study neural processes in multiple areas of the brain 72 

(Stringer et al., 2019), such as in the motor or the sensorimotor areas (Churchland and Shenoy, 2007; 73 

Gallego et al., 2020). At the periphery of the nervous system, it is also possible to record the activity 74 

of individual motor neurons innervating muscle fibers (Duchateau and Enoka, 2011; Heckman and 75 

Enoka, 2012; Farina et al., 2016). The motor unit, i.e., a motor neuron and the muscle fibers it 76 

innervates, acts as an amplifier of the neural activity, as one action potential propagating along a motor 77 

neuron’s axon generates an action potential in each of the innervated muscle fibers. The discharge 78 

activity of motor units can be identified by decomposing surface electromyographic (EMG) signals 79 

into trains of motor unit action potentials (MUAPs) using, e.g., blind-source separation algorithms 80 

(Holobar and Farina, 2014; Farina and Holobar, 2016). The multiple observations for source 81 

separation are obtained by recording EMG signals with grids of electrodes. This approach usually 82 

allows for the reliable analysis of 5 to 40 concurrently active motor units (Del Vecchio et al., 2017; 83 

Del Vecchio et al., 2020; Hug et al., 2021a).  84 

While the design of intracortical (e.g., (Jun et al., 2017; Steinmetz et al., 2018)) and intramuscular 85 

(e.g., (Muceli et al., 2015; Muceli et al., 2022)) electrodes arrays has scaled up over the years to record 86 

larger samples of neural cells, the configuration of grids of surface EMG electrodes has not 87 

systematically evolved. Most researchers currently use grids with 64 electrodes arranged in 13 × 5 or 8 88 

× 8 montages, the interelectrode distance (IED) between adjacent electrodes (e.g., 4 mm, 8 mm, or 10 89 

mm) being dictated by the size of the muscle to cover. Yet, optimizing these parameters, i.e., grid size 90 

and IED, may influence the performance of EMG decomposition. Currently, there are no 91 

recommendations on optimal designs for grids of electrodes.  92 

Source separation algorithms are based on the necessary condition that identifiable motor units have a 93 

unique representation of their action potentials across the multi-channel EMG signals (Farina et al., 94 

2008; Holobar and Farina, 2014; Farina and Holobar, 2016). This implies that the three-dimensional 95 

waveform of a MUAP (one time dimension and two spatial dimensions) is unique within the pool of 96 

active motor units detected by the grid of electrodes. In practice, the identified motor units are those 97 

that innervate larger numbers of muscle fibers, as their action potentials tend to have the largest 98 

energy. Conversely, low-threshold motor units usually remain hidden since their energy is close to the 99 

baseline noise. Increasing the density of electrodes would increase the spatial sampling of EMG 100 

signals (Farina and Holobar, 2016), which in turn should improve the discrimination of MUAPs, 101 

allowing the identification of a higher number of motor units. Additionally, increasing the density of 102 
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electrodes may reveal the hidden low-threshold motor units by sampling their action potentials across 103 

a higher number of electrodes, leading to a better compensation of the additive noise in the mixture 104 

model of the EMG signal (Farina and Holobar, 2016). 105 

In this study, we combined computational and laboratory experiments to identify the optimal design 106 

parameters of grids of surface electrodes with the aim to maximize the number of identified motor 107 

units. We first simulated a pool of 200 motor units and the associated EMG signals recorded from 108 

grids of electrodes of various sizes and densities. These simulations showed that the greater the size 109 

and the density of the grid, the higher the percentage of theoretically identifiable motor units and the 110 

relative ratio of theoretically identifiable deep units. We confirmed these theoretical results with 111 

experimental signals recorded with a grid of 256 electrodes with a 4-mm IED that was down-sampled 112 

in the space domain to obtain six grid configurations (surface range: 2-36 cm2 and IED range: 4-16 113 

mm). Finally, we prototyped a new grid of 256 electrodes with a 2-mm IED and demonstrated that the 114 

number of identified motor units further increased with 2-mm IED. The entire dataset (raw and 115 

processed data) and codes are available at https://figshare.com/s/f4a94d9bdff470bf10f8.  116 
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Methods 117 

Computational study 118 

A pool of 200 motor units was simulated to test whether increasing the density and the size of surface 119 

grids of electrodes would impact the number of theoretically identifiable motor units. The simulations 120 

were based on an anatomical model entailing a cylindrical muscle volume with parallel fibers (Farina 121 

et al., 2008; Konstantin et al., 2020), in which subcutaneous and skin layers separate the muscle from 122 

the surface electrodes. Specifically, we set the radius of the muscle to 25.4 mm and the thicknesses of 123 

the subcutaneous and skin layers to 5 mm and 1 mm, respectively. The centers of the motor units were 124 

distributed within the cross section of the muscle using a farthest point sampling technique. The 125 

farthest point sampling filled the cross-section by iteratively adding centers points that were 126 

maximally distant from all the previously generated motor unit centers, resulting in a random and even 127 

distribution of the motor unit territories within the muscle. The number of fibers innervated by each 128 

motor neuron followed an exponential distribution, ranging from 15 to 1500. The fibers of the same 129 

motor unit were positioned around the center of the motor unit within a radius of 0.2 to 9.8 mm, and a 130 

density of 20 fibers/mm2. Because motor unit territories were intermingled, the density of fibers in the 131 

muscle reached 200 fibers/mm2. The MUAPs were detected by circular surface electrodes with a 132 

diameter of 1 mm. The simulated grids were centered over the muscle in the transverse direction, with 133 

a size ranging from 14.4 to 36 cm2, and an IED ranging from 2 to 36 mm. 134 

 135 

Laboratory study 136 

Participants 137 

Six healthy participants (all males; age: 26 ± 4 yr; height: 174 ± 7 cm; body weight: 66 ± 15 kg) 138 

volunteered to participate in the first experimental session of the study. They had no history of lower 139 

limb injury or pain during the months preceding the experiments. One of these individuals (age: 26 yr; 140 

height: 168 cm; bodyweight: 51 kg) participated in a second experimental session to test the 141 

prototyped grid with an IED of 2 mm. The Ethics Committee at Imperial College London reviewed 142 

and approved all procedures and protocols (no. 18IC4685). All participants provided their written 143 

informed consent before the beginning of the experiment. 144 

 145 

Experimental tasks 146 

The two experimental sessions consisted of a series of isometric ankle dorsiflexions performed at 30% 147 

and 50% of the maximal voluntary torque (MVC) during which we recorded high density 148 

electromyographic (HD-EMG) signals over the Tibialis Anterior muscle (TA). The participant sat on a 149 

massage table with the hips flexed at 30°, 0° being the hip neutral position, and their knees fully 150 

extended. We fixed the foot of the dominant leg (right in all participants) onto the pedal of a 151 
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commercial dynamometer (OT Bioelettronica, Turin, Italy) positioned at 30° in the plantarflexion 152 

direction, 0° being the foot perpendicular to the shank. The thigh was fixed to the massage table with 153 

an inextensible 3-cm-wide Velcro strap. The foot was fixed to the pedal with inextensible straps 154 

positioned around the proximal phalanx, metatarsal and cuneiform. Force signals were recorded with a 155 

load cell (CCT Transducer s.a.s, Turin, Italy) connected in-series to the pedal using the same 156 

acquisition system as for the HD-EMG recordings (EMG-Quattrocento; OT Bioelettronica). The 157 

dynamometer was positioned accordingly to the participant’s lower limb length and secured to the 158 

massage table to avoid any motion during the contractions.  159 

All experiments began with a warm-up, consisting of brief and sustained ankle dorsiflexion performed 160 

at 50% to 80% of the participant’s subjective MVC. During the warm-up, all participants learnt to 161 

produce isometric ankle dorsiflexion without co-contracting the other muscles crossing the hip and 162 

knee joints. At the same time, we iteratively adjusted the tightening and the position of the straps to 163 

maximize the comfort of the participant. Then, each participant performed two 3-to-5 s MVC with 120 164 

s of rest in between. The peak force value was calculated using a 250-ms moving average window, and 165 

then used to set the target level during the submaximal contractions. After 120 s of rest, each 166 

participant performed two trapezoidal contractions at 30% and 50% MVC with 120 s of rest in 167 

between, consisting of linear ramps up and down performed at 5%/s and a plateau maintained for 20 s 168 

and 15 s at 30% and 50% MVC, respectively. The order of the contractions was randomized. One 169 

participant (S2) did not perform the contractions at 50% MVC. 170 

 171 

High-density electromyography 172 

In the first experimental session, four adhesive grids of 64 electrodes (13 x 5 with a missing electrode 173 

in a corner; gold coated; 1 mm diameter; 4 mm IED; OT Bioelettronica) were placed over the belly of 174 

the TA. The grids were carefully positioned side-to-side with a 4-mm-distance between the electrodes 175 

at the edges of adjacent grids (Figure 1A). The 256 electrodes were centered to the muscle belly and 176 

laid within the muscle perimeter identified through palpation. The skin was shaved, abrased and 177 

cleansed with 70% ethyl alcohol. Electrode-to-skin contact was maintained with a bi-adhesive 178 

perforated foam filled with conductive paste. The grids were wrapped with tape and elastic bands to 179 

secure the contact with the skin. The four pre-amplifiers were connected in-series with stackable 180 

cables to a wet reference band placed above the medial malleolus of the same leg. HD-EMG signals 181 

were recorded in monopolar derivation with a sampling frequency of 2,048 Hz, amplified (x150), 182 

band-pass filtered (10–500 Hz), and digitized using a 400 channels acquisition system with a 16-bit 183 

resolution (EMG-Quattrocento; OT Bioelettronica). 184 

In the second experimental session, one ultra-dense prototyped grid of 256 electrodes (Figure 1H; 26 x 185 

10 with a missing electrode in each corner; gold coated; 1 mm diameter; 9 cm2 area; 2-mm IED; 186 
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custom-manufactured for this study by OT Bioelettronica) was placed over the belly of the TA and the 187 

HD-EMG signals were recorded using the same procedure as previously described.  188 

 189 

Grid configurations 190 

During the first experimental session, we recorded EMG signals from the TA with a total of 256 191 

electrodes covering an area of 36 cm2 over the muscle (10 cm x 3.6 cm, 4-mm IED, Figure 1A). To 192 

investigate the effect of electrode density, we down-sampled the grid of 256 electrodes by successively 193 

discarding rows and columns of electrodes and artificially generating three new grids covering the 194 

same area with IEDs of 8 mm, 12 mm, and 16 mm, that involved 256, 64, 35, and 20 electrodes, 195 

respectively (Figure 1B-D). It is noteworthy that the 8-mm and 16-mm grids covered a surface of 32 196 

cm2 because they included an odd number of rows and columns. To investigate the effect of the size of 197 

the grid, we discarded the peripherical electrodes to generate grids of 63, 34 and 19 electrodes with a 198 

4-mm IED, covering areas of 7.7, 3.8 and 2 cm2 over the muscle (Figure 1E-G). We chose these sizes 199 

to match the number of electrodes used in the density analysis, thus comparing grids with similar 200 

number of electrodes, but different densities and sizes (in Figure 1, B versus E, and C versus F).  201 

During the second experimental session, we recorded EMG signals from the TA with an ultra-dense 202 

grid of 256 electrodes covering an area of 9 cm2 over the muscle (5 cm x 1.8 cm, 2-mm IED, Figure 203 

1H). Using the same procedure as above, we generated two artificial grids of 64 and 32 electrodes with 204 

an IED of 4 mm and 8 mm, respectively.  205 

 206 

HD-EMG decomposition 207 

We decomposed the signals recorded in all the conditions using the same algorithm, parameters, and 208 

procedure. First, the monopolar EMG signals were band-pass filtered between 20 and 500 Hz with a 209 

second-order Butterworth filter. The channels with low signal-to-noise ratio or artifacts were discarded 210 

after visual inspection. The HD-EMG signals were then decomposed into individual motor unit pulse 211 

trains using convolutive blind-source separation, as previously described (Negro et al., 2016). In short, 212 

the EMG signals were first extended by adding delayed versions of each channel. We kept the same 213 

extension factor for all the conditions to reach 1000 extended channels, as previously suggested 214 

(Negro et al., 2016). The extended signals were spatially whitened to make them uncorrelated and of 215 

equal power. Thereafter, a fixed-point algorithm was applied to identify the sources embedded in the 216 

EMG signals, i.e., the motor unit pulse trains, or series of delta functions centered at the motor unit 217 

discharge times. In this algorithm, the contrast function g(x) = log(cosh(x)) was iteratively applied to 218 

the EMG signals to skew the distribution of the values of the motor unit pulse trains toward 0, and thus 219 

maximize the level of sparsity of the motor unit pulse train. The high level of sparsity matches the 220 
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physiological properties of motor units, with a relatively small number of discharges per second (< 50 221 

discharge times/s during submaximal isometric contractions). The convergence was reached once the 222 

level of sparsity did not substantially vary (with a tolerance fixed at 10-4) when compared to the 223 

previous iteration (Negro et al., 2016). At this stage, the motor unit pulse train contained high peaks 224 

(i.e., the delta functions from the identified motor unit) and lower values due to the activities of other 225 

motor units and noise. High peaks were separated from lower values using peak detection and K-mean 226 

classification with two classes. The peaks from the class with the highest centroid were considered as 227 

the discharge times of the identified motor unit. A second algorithm refined the estimation of the 228 

discharge times by iteratively recalculating the motor unit filter and repeating the steps with peak 229 

detection and K-mean classification until the coefficient of variation of the inter-spike intervals was 230 

minimized. This decomposition procedure has been previously validated using experimental and 231 

simulated signals (Negro et al., 2016). After the automatic identification of the motor units, duplicates 232 

were automatically removed. For this purpose, the pulse trains identified from pairs of motor units 233 

were first aligned using a cross-correlation function to account for a potential delay due to the 234 

propagation time of action potentials along the fibers. Then, two discharge times were considered as 235 

common when they occurred within a time interval of 0.5 ms, and two or more motor units were 236 

considered as duplicates when they had at least 30% of their identified discharge times in common 237 

(Holobar et al., 2010). In principle, the limited level of synchronization between individual motor units 238 

results in a few simultaneous discharges between pairs of motor units. A threshold of 30% is therefore 239 

highly conservative to ensure the removal of all motor units with a level of synchronization well above 240 

physiological values. It is worth noting that most of the motor units identified as duplicates after the 241 

automatic decomposition had almost 100% of their discharge times in common. In that case, the motor 242 

unit with the lowest coefficient of variation of the inter-spike intervals was retained for the analyses. 243 

At the end of these automatic steps, all the motor unit pulse trains, i.e., the output of the decomposition 244 

resulting from the projection of EMG signals onto individual motor unit filters, were visually 245 

inspected, and manual editing was performed to correct the false identification of artifacts or the 246 

missed discharge times (Del Vecchio et al., 2020; Hug et al., 2021b; Avrillon et al., 2023). The update 247 

of the motor unit filters with the corrected discharge times and the recalculation of the motor unit 248 

pulse trains always improved the distance between the discharge times and the noise, quantified with 249 

the pulse-to-noise ratio (PNR) (Holobar et al., 2014). Note that this manual step is highly reliable 250 

across operators, as previously demonstrated by Hug et al. (2021b). Duplicates were checked a second 251 

time after manual editing, with very rare cases of removal as most of the duplicates were automatically 252 

identified after the automatic decomposition. Only the motor unit pulse trains which exhibited a PNR 253 

> 28 dB after manual editing were retained for further analysis. 254 

 255 
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We further tested whether decomposing subsets of electrodes within a highly populated grid of 256 256 

electrodes increased the number of identified motor units. Indeed, the lower ratio of large motor units 257 

sampled by each independent subset of 64 electrodes could allow the algorithm to converge to smaller 258 

motor units that contribute to the signal. For a similar number of iterations, it is likely that these motor 259 

units would have otherwise contributed to the noise component of the mixture model of the EMG 260 

signal (Farina and Holobar, 2016). Thus, we decomposed the grids of 256 electrodes (4-mm and 2-mm 261 

IED, Figure 1A, H) as four separated grids of 64 electrodes before removing the motor units 262 

duplicated between grids.  263 

 264 

 265 

Analyses 266 

Computational study 267 

We first estimated the theoretical percentage of identifiable motor units for each of the simulated 268 

conditions. To do so, the simulated MUAPs detected over the entire set of electrodes were compared 269 

with each other. The comparisons were done pairwise by first aligning the MUAPs in time using the 270 

cross-correlation function, and then computing the normalized mean square difference between the 271 

aligned action potentials. Pairs of action potentials with a mean square difference below 5% were 272 

considered not discriminable. The 5% criterion was based on the variability of motor unit action 273 

potential shapes observed experimentally for individual motor units (Farina et al., 2008). After 274 

computing all pair-wise comparisons, we then computed the percentage of action potentials that could 275 

be discriminated from all others, i.e., the theoretical percentage of identifiable motor units. This metric 276 

is independent from the algorithm used for decomposition and establishes a theoretical upper bound in 277 

the number of motor units that can be identified by any decomposition algorithm. For each 278 

theoretically identifiable motor unit, we also computed the distance between the center of the territory 279 

of the corresponding muscle fibers and the skin surface. 280 

 281 

Laboratory study – number of identified motor units 282 

We reported the absolute number of motor units (PNR > 28 dB) identified with all the grid 283 

configurations. For each participant, the number of identified motor units was then normalized to the 284 

maximal number of motor units found across all conditions, yielding normalized numbers of identified 285 

motor units 𝑁 expressed in percentage. For each condition, we calculated the mean and standard 286 

deviation of the 𝑁 values across participants. To investigate the effects of density and size of the grid, 287 

we fitted logarithmic trendlines to the relationships between the averaged 𝑁 values and IED or grid 288 
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size. We also fitted a logarithmic trendline to the average 𝑁 values and their corresponding number of 289 

electrodes, in which case the conditions involving the same number of electrodes, but different grid 290 

size and density, were given a weight of 0.5 in the minimization function. We reported the r2 and p-291 

value for each regression trendline. To maintain consistency with the computational study 292 

investigating the number of theoretically identifiable motor units across grid designs, the trendlines 293 

were fitted on the results obtained when the complete grids of 256 electrodes were decomposed as 294 

independent subsets of 64 electrodes, which systematically returned the highest number of identified 295 

motor units. The trendlines fitted on the results obtained with the decomposition of the 256 electrodes 296 

as a whole are reported in Figure 4-1.  297 

 298 

Laboratory study – properties of identified motor units 299 

To investigate the effects of electrode density and grid size on the properties of the identified motor 300 

unit, we used a typical frequency distribution of the motor unit force recruitment thresholds in the 301 

human TA (Caillet et al., 2022b), where 𝐹 (𝑗) is the force recruitment threshold of the jth motor unit 302 

in the normalized motor unit pool ranked in ascending order of 𝐹 .  303 𝐹 (𝑗) = 0.50 ∙ 58.12 ∙ 𝑗 + 120 . , 𝑗 ∈ 0; 1  

The identified motor units were then classified according to this relationship and their measured force 304 

recruitment threshold, the first half of the active pool being ‘early recruited’, and the second half ‘late 305 

recruited’ (Henneman and Mendell, 1981; Caillet et al., 2022a). For each condition, we reported the 306 

percentage of identified motor units that were ‘early recruited’. We did not report this metric when 307 

five or fewer motor units were identified in one condition for three or more participants.  308 

 309 

Laboratory study – correlation between observations 310 

We assessed how the density of electrodes impacted the information redundancy in EMG signals 311 

recorded by adjacent electrodes. To this end, MUAP shapes were identified over the 256 electrodes 312 

with the spike-triggered averaging technique. To do so, the discharge times were used as a trigger to 313 

segment and average the HD-EMG signals over a window of 50 ms. For each motor unit, we 314 

identified the electrode with the highest action potential peak-to-peak amplitude and calculated the 315 

average correlation coefficient 𝜌 between this action potential and those recorded by the four adjacent 316 

electrodes with an IED of 4 mm, 8 mm, 12 mm, and 16 mm. We also repeated this correlation analysis 317 

for the ultra-dense grid of 256 electrodes using an IED of 2 mm, 4 mm, and 8 mm.  318 
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Results 319 

All the datasets (raw and processed data) and codes used to process the data are available at 320 

https://figshare.com/s/f4a94d9bdff470bf10f8. 321 

 322 

Computational study 323 

We simulated the discharge activity of 200 motor units recorded by 84 configurations of grids of 324 

electrodes (Figure 2; surface range: 14.4 to 36 cm2, IED range: 2 to 36 mm). The number of 325 

theoretically identifiable motor units increased with the size of the grid, from 46.7 ± 7.7% of the motor 326 

units theoretically identifiable with a grid of 14.4 cm2 to 77.8 ± 5.5% of the motor units theoretically 327 

identifiable with a grid of 36 cm2. The number of theoretically identifiable motor units also increased 328 

with shorter interelectrode distances. For example, with a grid of 36 cm2, the number of theoretically 329 

identifiable motor units increased from 63.5% to 83.5% of the motor units with an IED of 36 and 2 330 

mm, respectively (Figure 2B). Increasing the surface size and the density of the grid of electrodes 331 

revealed deeper motor units. The averaged distance of theoretically identifiable motor units from the 332 

skin increased with the size of the grid (Figure 2C; 14.3 ± 0.1 mm vs. 16.5 ± 0.2 mm with grids of 333 

14.4 and 36 mm2, respectively), but not with the IED of the grid (Figure 2D; 15.6 ± 1.1 mm vs. 15.5 ± 334 

0.9 mm with an IED of 36 and 2 mm, respectively). 335 

 336 

Laboratory study - grids of 256 electrodes with an IED of 4-mm 337 

Number of identified motor units 338 

The motor unit pulse trains automatically identified across all conditions, intensities, and participants 339 

were visually inspected and carefully edited when a missing discharge time or a falsely identified 340 

artifact were observed. On average, 9 ± 4 % and 22 ± 9 % of the motor units automatically identified 341 

at 30% and 50% MVC, respectively, were removed after visual inspection and manual editing. 342 

Furthermore, when the four grids of 64 electrodes were separately decomposed, 30 ± 5 % and 24 ± 6 343 

% of the automatically identified motor units were removed because they were identified in more than 344 

one grid (only one pulse train was retained in case of duplicates). The highest number of identified 345 

motor units was systematically reached with the separate decomposition of the four grids of 64 346 

electrodes with an IED of 4 mm, with 56 ± 14 motor units (PNR = 34.2 ± 1.1) and 45 ± 10 motor units 347 

(PNR = 34.0 ± 0.9) at 30% and 50% MVC, respectively (Figure 3). At least 82% of the motor units 348 

identified in one condition were also identified in the conditions involving a higher number of 349 

electrodes. Similarly, 91% to 100% of the motor units identified in one condition were also identified 350 

with the 256-electrode configuration (4-mm IED, 36-cm2 size, Figure 1A) with the four grids 351 

decomposed separately. 352 
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 353 

When considering the effect of electrode density (grid size fixed at 32-36 cm2, Figure 1A-D), we 354 

found the lowest number 𝑁 of identified motor units with the 16-mm IED, with 3 ± 1 motor units and 355 

2 ± 1 motor units at 30% and 50% MVC, respectively (Figure 4A, C). Additional motor units were 356 

gradually identified with greater electrode densities. The highest number of identified motor units was 357 

observed with the highest density (4-mm IED), with 56 ± 14 and 45 ± 10 motor units at 30% and 50% 358 

MVC, respectively, with the 4×64-electrode decomposition procedure (Figure 4A, C). With the 256- 359 

electrode decomposition procedure, 43 ± 11 and 25 ± 6 motor units were identified at 30% and 50% 360 

MVC, respectively (Figure 4A, C). Finally, we found a decreasing logarithmic relationship between 361 

the normalized number 𝑁 of motor units, averaged for each participant, and the IED, with r2 = 1.0 (p = 362 

2.5∙10-5) and r2 = 0.99 (p = 0.001) at 30% and 50% MVC, respectively (Figure 4B, D).  363 

When considering the effect of the size of the grid (IED fixed at 4 mm, Figure 1A, E-G), we found the 364 

lowest number 𝑁 of motor units with a grid of 2 cm2, with 4 ± 2 motor units and 4 ± 2 motor units at 365 

30% and 50% MVC, respectively (Figure 5A, C). Additional motor units were then gradually 366 

identified with larger grid sizes. The highest number of motor units was observed with a grid of 36 367 

cm2,  with 56 ± 14 and 45 ± 10 motor units at 30% and 50% MVC, respectively, with the 4×64-368 

electrode decomposition procedure (Figure 4A, C). With the 256- electrode decomposition procedure, 369 

43 ± 11 and 25 ± 6 motor units were identified at 30% and 50% MVC, respectively (Figure 4A, C). 370 

Finally, we found an increasing logarithmic relationship between the normalized number of motor 371 

units 𝑁, averaged for each participant, and the size of the grid, with r2 = 0.99  (p = 3.0∙10-4) and r2 = 372 

0.98  (p = 0.001) at 30% and 50% MVC, respectively (Figure 5B, D). It is noteworthy that the 373 

parameters of the fits were very similar at 30% and 50% MVC in both analyses. 374 

As both the density and the size of the grid determine the number of electrodes, we finally fitted the 375 

relationship between the normalized number of motor units 𝑁 and the number of electrodes. As 376 

observed previously, more motor units were identified with a larger number of electrodes, following a 377 

logarithmic tendency with r2 = 0.98 (p = 0.018) and r2 = 0.95 (p = 0.016) at 30% and 50% MVC, 378 

respectively (Figure 6). A plateau should theoretically be reached with grids of 1024 and 4096 379 

electrodes (36-cm2 grids with 2-mm and 1-mm IED, respectively), with a prediction of 50% and 90% 380 

more motor units.  381 

For a fixed number of electrodes, it is noteworthy that the size and the density, although linked, may 382 

have different impact on the number of identified motor units (black crosses in Figure 6). For example, 383 

1.25 times more motor units were obtained with the 64-electrode condition (32 cm2, 8-mm IED, 384 

Figure 1B) than with the 63-electrode condition (7.7 cm2, 4-mm IED, Figure 1E) for the group of 385 

participants at 30% MVC.  386 
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 387 

Characteristics of identified motor units 388 

We found an increasing logarithmic relationship between the percentage of early recruited motor units 389 

for each participant and the density of the grid, with r2 = 0.91 (p = 2.8∙10-3) at 30% MVC (Figure 7F). 390 

Contrary to the density, the size of the grid did not impact the percentage of early recruited motor 391 

units, with the percentage ranging from 20 to 29% across all sizes, and the logarithmic trendline 392 

returning a negligible slope and a low r2 = 0.28 (Figure 7C, G). Such differences were also not 393 

observed at 50% MVC, where the percentage of early recruited motor units remained below 10% for 394 

all conditions. 395 

To support the above observations made at 30% MVC, grids with the same number of electrodes, but 396 

different densities and sizes, were directly compared. 62% of the motor units identified with the grids 397 

of 64 electrodes (32 cm2, IED 8 mm) and 63 electrodes (7.7 cm2, IED 4 mm) were identified in both 398 

conditions at 30% MVC. 28 ± 9% of the motor units specific to the 8-mm IED grid were early 399 

recruited, while 44 ± 11% of the motor units specific to the 4-mm IED condition were early recruited. 400 

Similar results were obtained with the grids of 35 (36 cm2, 12-mm IED) and 34 electrodes (3.6 cm2, 4-401 

mm IED), where a higher number of early recruited motor units were specifically identified with 402 

denser rather than larger grids.  403 

 404 

Correlation between MUAPs from adjacent electrodes 405 

Figure 8 reports the effect of the density of electrodes on the level of correlation 𝜌 between the profiles 406 

of action potentials recorded by adjacent electrodes. The lowest average correlation coefficient 𝜌 was 407 

observed with an IED of 16 mm (𝜌 = 0.87 ± 0.03 and 𝜌 = 0.88 ± 0.04 at 30% and 50% MVC, 408 

respectively). The level of correlation increased with a shorter IED, with 𝜌 = 0.96 ± 0.04 and 𝜌 = 0.95 409 

± 0.05 between the profiles of action potentials recorded by adjacent electrodes with a 4-mm IED at 410 

30% and 50% MVC, respectively (Figure 8B, C).  411 

 412 

Laboratory study with an ultra-dense prototyped grid of 256 electrodes with 2-mm IED  413 

31 and 26 motor units (PNR > 28 dB) were identified for one participant with the ultra-dense grid of 414 

256 electrodes (2-mm IED, 9 cm2, Figure 1H) at 30% and 50% MVC, respectively (Figure 9B). Note 415 

that the signals from four independent subsets of 64 electrodes were decomposed separately. For that 416 

participant, more motor units were identified with the ultra-dense grid of 256 electrodes than with the 417 

grid of 64 electrodes covering the same area (Figure 5A, C). Indeed, 31 and 26 motor units were 418 

respectively identified at 30% and 50% MVC with the grid of 256 electrodes (Figure 9C), while 25 419 
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(24 ± 5 for the group) and 19 (18 ± 4 for the group) motor units were identified with the grid of 64 420 

electrodes (Figure 5A, C). Moreover, fewer motor units were identified when the electrode density of 421 

the ultra-dense grid was decreased (Figure 9C), with 22 and 13 motor units identified with a 4- and 8-422 

mm IED at 30% MVC, respectively, and 21 and 9 motor units identified with a 4- and 8-mm IED at 423 

50% MVC, respectively. At 30% MVC, the rate of increase of N between 4- and 2-mm IED followed 424 

the prediction computed in Figure 4B and illustrated by the dash line in Figure 9C. At 50% MVC, the 425 

rate of increase of N (dotted line in Figure 9C) was lower than the prediction. As previously observed, 426 

the correlation between adjacent MUAPs increased from ρ = 0.92 with an 8-mm IED to ρ = 0.98 with 427 

a 2-mm IED at 30% MVC, and from ρ = 0.85 with an 8-mm IED to ρ = 0.93 with a 2-mm IED at 50% 428 

MVC (Figure 9A). All the motor units identified with the 8-mm and 4-mm IED were also identified 429 

with the 4-mm and 2-mm IED grids, respectively. Finally, more motor units with an early recruitment 430 

were identified when increasing the density from 8- to 4-mm IED (blue vs black trains in Figure 9B), 431 

and from 4- to 2-mm IED (red trains in Figure 9B). 432 

  433 
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Discussion 434 

This study systematically investigated how the design parameters of grids of surface EMG electrodes 435 

(grid size and electrode density) impact the number and the properties of the motor units identified 436 

with EMG decomposition. Using a combination of computational and experimental analyses, we 437 

found that larger and denser grids of electrodes than conventionally used reveal a larger sample of 438 

identified motor units. As most of the motor units that were not identified with less dense and smaller 439 

grids had an early recruitment threshold, we concluded that denser grids allow to identify smaller 440 

motor units. This is due to a better spatial sampling of MUAPs over the grid, which in turn improves 441 

the discrimination of motor units with a unique set of MUAPs among active motor units. These results 442 

clarify the direction for designing new grids of electrodes that could span across the entire surface of 443 

the muscle of interest while keeping a high density of electrodes, with IED as low as 2 mm. 444 

Identifying large sets of small and large motor units is relevant in many research areas related to motor 445 

control, such as the investigation of synergies (Hug et al., 2022), neuromuscular modelling (Caillet et 446 

al., 2022c), or human-machine interfacing (Farina et al., 2021). 447 

 448 

The number 𝑁 of identified motor units increased across participants with the density of electrodes 449 

(Figure 4; Figure 8C), the size of the grid (Figure 5), and the number of electrodes (Figure 6). On 450 

average, 30 and 19 motor units were identified with the ‘conventional’ 64-electrode grid (8-mm IED, 451 

32 cm2 surface area) at 30% and 50% MVC, respectively, which is consistent with several previous 452 

studies using similar grid designs (Del Vecchio et al., 2020). By increasing the density of electrodes 453 

and size of the grid to reach a total of 256 electrodes separated by a 4-mm IED, we identified on 454 

average 56 and 45 motor units at 30% and 50% MVC, respectively. We even reached 79 and 59 motor 455 

units for one subject (Figure 3), which is substantially more than the numbers of motor units usually 456 

reported in studies with similar methods, and twice those obtained with grids of 64 electrodes in this 457 

study. Our computational and experimental analyses showed that the size of the grid is a key factor 458 

contributing to the higher number of identified motor units (Figure 2B; Figure 5). According to our 459 

simulations, increasing the size of the grid increases the number of theoretically identifiable motor 460 

units, i.e., the number of motor units with unique sets of MUAPs across electrodes (Figure 2B). These 461 

differences between MUAPs result from the anatomical and physiological differences between 462 

adjacent motor units, such as the length of their fibers, the spread of the end plates, or their conduction 463 

velocity, as well as from the properties of the tissues separating the fibers from each recording 464 

electrode (Farina et al., 2004). Larger grids better sample these differences across electrodes, revealing 465 

the unique profiles of each motor unit action potentials (Farina et al., 2008). The density of electrodes 466 

was also a critical factor to increase the number of identified motor units (Figure 4; Figure 9C). Dense 467 

grids especially allowed to better identify early recruited motor units. Classically, the decomposition 468 
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algorithms tend to converge towards the large and superficial motor units that contribute to most of the 469 

energy of the EMG signals (Farina and Holobar, 2016). Conversely, action potentials of the smallest 470 

motor units tend to have lower energy and are masked by the potentials of the larger units. These 471 

factors explain the lowest representation of low-threshold motor units in available HD-EMG datasets 472 

(Caillet et al., 2023). Increasing the density of electrodes would therefore enable to better sample the 473 

action potential profiles of these early recruited motor units across multiple electrodes, enabling their 474 

identification. However, we observed that increasing the density did not reveal additional early 475 

recruited motor units during contractions at 50% MVC (Figure 7D). This is potentially due to the 476 

higher energy of the MUAPs of the motor units recruited between 30% and 50% MVC. Additionally, 477 

we also showed in one subject that synthetically increasing the density of electrodes by resampling 478 

EMG signals with spatial interpolation does not have the same effect as with denser grids. In this 479 

example, 4 and 19 motor units were identified from the interpolated grid with a 4-mm and 2-mm IED, 480 

respectively, vs. 19 and 24 motor units with the experimentally recorded signals. All the motor units 481 

identified with the interpolated grid were also identified with the experimentally recorded signals 482 

(Figure 4-2). 483 

 484 

The number of identified motor units 𝑁 monotonically increased with the density of electrodes (Figure 485 

4BD), the size of the grid (Figure 5BD) and the number of electrodes (Figure 6), following significant 486 

logarithmic trendlines. Remarkably, very similar logarithmic tendencies were obtained at both 30% 487 

and 50% MVC in all the analyses. Altogether, these trendlines suggested that the normalized number 488 

of identified motor units 𝑁 would grow with an electrode density beyond a 4-mm IED. We 489 

experimentally tested this hypothesis by designing a new prototyped grid of 256 electrodes separated 490 

by an IED of 2 mm. As predicted, more motor units were identified with a 2 mm than with a 4 mm 491 

IED, following at 30% MVC the same rate of increase as predicted by the logarithmic trendlines 492 

(Figure 9C) between 4-mm and 2-mm IED. This increase may plateau with higher electrode densities, 493 

as the level of correlation between the profiles of MUAPs detected over adjacent electrodes tended to 494 

1 (Figure 9A). Therefore, the high level of similarity between signals recorded from adjacent 495 

electrodes in ultra-dense grids (IED < 2 mm) may limit the percentage of identifiable motor units 496 

(Farina and Holobar, 2016). According to these results, we consider that optimal designs of surface 497 

grids of electrodes for identifying individual motor units would involve a surface that covers the 498 

muscle of interest with an IED as low as 2 mm.  499 

 500 

Another important factor for the accuracy of the discharge times estimated for each individual motor 501 

unit is the quality of the motor unit pulse trains, estimated by the PNR (Holobar et al., 2014) or the 502 

silhouette value. In this study, we found that the quality of the identified motor units (i.e., 503 
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decomposition accuracy) increased when increasing the density of electrodes or the size of the grid, 504 

with PNR reaching on average 37-38 dB across participants with the grid of 256 electrodes (Figure 4-505 

3). A greater average PNR implies the need of less manual editing following the automatic 506 

decomposition (Hug et al., 2021b). The better estimates of motor unit pulse trains depend on the better 507 

signal to noise ratio following the inversion of the mixing matrix, since the pulse train of each motor 508 

unit is computed by projecting the extended, whitened signals on the separation vector (Holobar and 509 

Farina, 2014; Farina and Holobar, 2016; Negro et al., 2016). Likewise, the PNR substantially 510 

increased after we computationally increased the number of electrodes by spatially resampling the 511 

EMG signals. This practical result is of interest for most of the physiological studies that require a 512 

lengthy processing time to visually inspect and manually edit the discharge times estimated from the 513 

pulse trains of all the motor units (Hug et al., 2021b).  514 

 515 

Finally, we increased both the total number and the percentage of early recruited motor units identified 516 

by independently decomposing subsets of 64 electrodes within the grids of 256 electrodes, compared 517 

to the simultaneous decomposition of all available observations (Figure 7B, C). This was likely due to 518 

the lower ratio of large motor units sampled by each subset of electrodes, allowing the algorithm to 519 

converge to smaller motor units that contributed to the signal (Figure 7B, C). Importantly, it should be 520 

noted that the simulation results were obtained independently of a specific decomposition algorithm, 521 

as previously proposed by Farina et al (2008). On the other hand, the experimental results are based on 522 

a specific algorithm. Interestingly, however, the simulation and laboratory results were fully consistent 523 

and in agreement, indicating that the difference in shape of the spatially sampled MUAPs is the main 524 

factor influencing EMG decomposition. 525 

 526 

Conclusion 527 

By increasing the density and the number of electrodes, and the size of the grids, we increased the 528 

number of theoretically identifiable and experimentally identified motor units from the surface EMG 529 

signals. The identified motor units had pulse trains with high PNR, limiting the manual processing 530 

time. Moreover, we identified a higher percentage of early recruited motor units, which are classically 531 

filtered out with the conventional grid designs. In this way, a maximum of 79 motor units (PNR > 28 532 

dB; mean: 36 dB), including 40% of early recruited motor units, were identified, which is substantially 533 

greater than the samples previously reported with smaller and less dense grids. From these results, we 534 

encourage researchers to develop and apply larger and denser EMG grids to cover the muscle of 535 

interest with IEDs as small as 2 mm. This approach should increase the sample of motor units that can 536 

be experimentally investigated with non-invasive techniques.  537 
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Figure Legends  612 

Figure 1: The eight grid configurations considered in this study. From the first grid of 256 electrodes 613 
(A, grid size: 36 cm2, IED: 4 mm), six shallower and smaller grids (B-G) were artificially obtained by 614 
discarding the relevant electrodes. (B,C,D) Density analysis: 8, 12, and 16mm IED. (E,F,G) Size 615 
analysis: 7.7, 3.6, and 2 cm2 surface area. (H) The ultra-dense prototyped grid of 256 electrodes (grid 616 
size: 9 cm2, IED: 2 mm).  617 

 618 

Figure 2: Results from the 200 simulated motor units with 84 configurations of grids of electrodes. (A) 619 
Each solid line represents a motor unit territory, the scatters being the muscle fibers. Blues lines are 620 
the theoretically identifiable motor units with a grid of 21.6 cm2 and an interelectrode distance (IED) 621 
of 18 mm, while the orange lines are the motor units revealed with a grid of 21.6 cm2 and an IED of 622 
2mm. Grey lines represent the non-identifiable motor units. The percentage of theoretically 623 
identifiable motor units (B) and their distance from the skin (C) are reported for the 84 configurations. 624 

 625 

Figure 3: Discharge times of the maximum number of motor units identified in one participant (S1) at 626 
30% (A) and 50% MVC (B), with 79 and 58 identified motor units, respectively. The motor units were 627 
identified with separated decompositions of the four grids of 64 electrodes (4 mm IED). (C) Discharge 628 
times of the 30 first recruited motor units during the ascending ramp of force (black curve) at 30% 629 
MVC (black box in A). 630 

 631 

Figure 4: Effect of the electrode density on the number of identified motor units 𝑁 at 30% (A, B) and 632 
50% MVC (C, D). The boxplots in the left column report the absolute number 𝑁 of identified motor 633 
units per participant (grey dots) and the median (orange line), quartiles, and 95%-range across 634 
participants. In the right column, the normalized number of motor units 𝑁 logarithmically decreases 635 
with interelectrode distance 𝑑 (4, 8, 12, and 16mm in abscissa) as 𝑁 = 195 − 68 𝑙𝑜𝑔(𝑑) (𝑟 =636 1.0, 𝑝 = 2.5 ∙ 10 ) at 30% MVC (B) and 𝑁 = 196 − 71 𝑙𝑜𝑔(𝑑) (𝑟 = 0.99, 𝑝 = 0.001) at 50% 637 
MVC (D). The standard deviation of 𝑁 across subjects is displayed with vertical bars. Moreover, the 638 
quality of the motor unit pulse trains (i.e., decomposition accuracy, estimated by the PNR) increased 639 
when increasing the density of electrodes (see Figure 4-3 for more details). Two decomposition 640 
procedures were considered for the 256-electrode condition; the grid of 256 black electrodes indicates 641 
that the 256 signals were simultaneously decomposed and the grid of 256 electrodes of four different 642 
colors indicates that four subsets of 64 electrodes were decomposed. To maintain consistency with the 643 
computational study, the trendlines were fitted with the 4*64 condition, which returned the higher 644 
number of identified motor units (see Figure 4-1 for the other fitting condition). It is worth noting that 645 
computationally increasing the density of electrodes by resampling the EMG signals with a spatial 646 
interpolation did not reveal any previously hidden motor units (Figure 4-2). 647 

 648 

Figure 5: Effect of the size of the grid on the number of identified motor units 𝑁 at 30% (A, B) and 649 
50% MVC (C, D). The boxplots in the left column report the absolute number 𝑁 of identified motor 650 
units per participant (grey dots) and the median (orange line), quartiles, and 95%-range across 651 
participants. In the right column, the normalized number of motor units 𝑁 logarithmically decreases 652 
with the size of the grid s (2, 3.8, 7.7, and 36 cm2 in abscissa) as 𝑁 = −20 + 33 𝑙𝑜𝑔(𝑠) (𝑟 =653 0.99, 𝑝 = 3.0 ∙ 10 ) at 30% MVC (B), and 𝑁 = −19 + 32 𝑙𝑜𝑔(𝑠) ( 𝑟 = 0.98, 𝑝 = 0.001) at 50% 654 
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MVC (D). The standard deviation of 𝑁 across subjects is displayed with vertical bars. Moreover, the 655 
quality of the identified motor unit pulse trains (i.e., decomposition accuracy, estimated by the PNR) 656 
increased when increasing the size of the grid (see Figure 4-3 for more details). Two decomposition 657 
procedures were considered for the 256-electrode condition; the grid of 256 black electrodes indicates 658 
that the 256 signals were simultaneously decomposed and the grid of 256 electrodes of four different 659 
colors indicates that four subsets of 64 electrodes were decomposed. To maintain consistency with the 660 
computational study, the trendlines were fitted with the 4*64 condition, which returned the higher 661 
number of identified motor units (see Figure 4-1 for the other fitting condition). 662 

 663 

Figure 6: Effect of the number 𝑛 of electrodes on the normalized number 𝑁 of identified motor units at 664 
30% (A) and 50% MVC (B). The discrete results per participant are displayed with grey data points. 665 
The average values 𝑁 per condition are displayed with black crosses. Weighted logarithmic trendlines 666 
were fitted to the data and returned (A) 𝑁 = −104 + 37 𝑙𝑜𝑔(𝑛) ( 𝑟 = 0.98, 𝑝 = 0.018), and (B) 667 𝑁 = −113 + 38 𝑙𝑜𝑔(𝑛) (𝑟 = 0.95, 𝑝 = 0.016). Two decomposition procedures were considered 668 
for the 256-electrode condition; the grid of 256 black electrodes indicates that the 256 signals were 669 
simultaneously decomposed and the grid of 256 electrodes of four different colors indicates that four 670 
subsets of 64 electrodes were decomposed. To maintain consistency with the computational study, the 671 
trendlines were fitted with the 4*64 condition, which returned the higher number of identified motor 672 
units (see Figure 4-1 for the other fitting condition). 673 

 674 

Figure 7: (A) Typical frequency distribution of motor unit force recruitment thresholds in a human 675 
TA. The black dashed lines denote the theoretical portions of the population of motor units recruited at 676 
30% and 50% MVC. Effect of the grid density (B, D, F) and grid size (C, E, G) on the percentage of 677 
early recruited motor units identified at 30% (B, C, F, G) and 50% MVC (D, E). The boxplots report 678 
the results per participant (grey dots) and the median (orange line), quartiles, and 95%-range across 679 
participants. (F) At 30% MVC, the percentage of early recruited identified motor units logarithmically 680 
decreases with interelectrode distance 𝑑 (4, 8, 12, and 16mm in abscissa) as 681 44.6 − 13.1 𝑙𝑜𝑔(𝑑) (𝑟 = 0.91, 𝑝 = 2.8 ∙ 10 ). (G) At 30% MVC, the percentage of early recruited 682 
identified motor units does not vary with the size of the grid s (2, 3.8, 7.7, and 36 cm2 in abscissa), the 683 
logarithmic trendline fitting (20.5 + 1.2 𝑙𝑜𝑔(𝑠)) returning a negligible slope and low 𝑟 =684 0.28 (𝑝 = 8 ∙ 10 ). The standard deviation across subjects is displayed with vertical bars. Two 685 
decomposition procedures were considered for the 256-electrode condition; the grid of 256 black 686 
electrodes indicates that the 256 signals were simultaneously decomposed and the grid of 256 687 
electrodes of four different colors indicates that four subsets of 64 electrodes were decomposed. To 688 
maintain consistency with the computational study, the trendlines were fitted with the 4*64 condition, 689 
which returned the higher number of identified motor units (see Figure 4-1 for the other fitting 690 
condition). We did not report the results when five or fewer motor units were identified in one 691 
condition for three or more participants. 692 

 693 

Figure 8: Effect of the electrode density on the correlation 𝜌 between the profiles of motor unit action 694 
potentials (MUAP) detected over adjacent electrodes (A) at 30% (B) and 50% MVC (C). The profile 695 
of the MUAP detected over the red electrode was compared to those detected over the four adjacent 696 
electrodes separated by a 4 (orange), 8 (blue), 12 (green) and 16 (purple) mm IED (A). The boxplots 697 
denote the correlation coefficient 𝜌 per participant (grey dots) and the median (orange line), quartiles, 698 
and 95%-range across participants. 699 
 700 
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Figure 9: Results for the ultra-dense prototyped grid (2 mm IED, 5 x 1.8 cm, 256 electrodes). (A) 701 
Description of the ultra-dense grid, where grey circles represent the electrodes. On average, the 702 
correlation between the profiles of MUAPs detected over electrodes separated by an IED of 2 mm 703 
(orange), 4 mm (blue), and 8 mm (purple) reached 𝜌 = 0.98, 0.96, and 0.92 at 30% MVC, respectively, 704 
and 0.93, 0.88, and 0.85 at 50% MVC, respectively. (B) Series of discharge times for motor units 705 
identified at 30% (left) and 50% MVC (right). The dark ticks represent the discharge times identified 706 
with a grid of electrodes with an 8-mm IED. The discharge times in blue were additionally identified 707 
with a grid of electrodes with a 4-mm IED, and the discharge times in red were additionally identified 708 
with a grid of electrodes with a 2-mm IED. All the pulse trains identified with one grid were also 709 
identified with the denser grids. (C) Effect of electrode density on the number of identified motor units 710 
at 30% (scatters) and 50% MVC (triangles). The trendlines from the density analysis in Figure 4B, D 711 
are also reported (red dotted lines). To maintain consistency with the other results, the grid was 712 
decomposed as four independent subsets of 64 electrodes, as explained in the Methods, to identify the 713 
higher number of motor units. 714 
 715 

Figure 4-1.  Effect of the density of the grid (A, D), the size of the grid (B, D), and the number of 716 
electrodes (C, F) on the normalized number 𝑁 of identified motor units at 30% (A, B, C) and 50% 717 
MVC (D, E, F). 𝑁 was estimated after decomposing the full grid of 256 electrodes and manually 718 
editing the motor unit pulse trains. Vertical bars (A, B, D, E) are the standard deviation of 𝑁 across 719 
subjects, scatters are the individual data points, and crosses are their mean (C, F). Logarithmic 720 
trendlines were fitted between the averaged values 𝑁 and IED, grid size, and number of channels, as in 721 
Figures 4, 5, and 6 of the main document. Here, the trendlines were fitted with the values obtained 722 
from the decomposition of the full grid of 256 electrodes. Consistent with the results provided in the 723 
main document, 𝑁 increased with electrode density (𝑑), grid size (𝑠), and with the number of 724 
electrodes (𝑛) following statistically significant logarithmic trendlines (p < 0.05). At 30% MVC, 725 𝑁 = 198 − 67 𝑙𝑜𝑔(𝑑) (𝑟 = 0.92), 𝑁 = −10 + 31 𝑙𝑜𝑔(𝑠) (𝑟 = 0.98), and 𝑁 = −78 +726 32 𝑙𝑜𝑔(𝑛) (𝑟 = 0.90). At 50% MVC, 𝑁 = 204 − 69 𝑙𝑜𝑔(𝑑) (𝑟 = 0.92), 727 𝑁 = 5 + 28 𝑙𝑜𝑔(𝑠) (𝑟 = 0.98), and 𝑁 = −57 + 29 𝑙𝑜𝑔(𝑛) (𝑟 = 0.90). It is noteworthy that the 728 
trendlines exhibited more pronounced plateaus (lower 𝑏 value in the 𝑦 = 𝑎 + 𝑏 ∙ log(𝑥) trendlines) 729 
with the decomposition of the full grid of 256 electrodes than with the decomposition of subsets of 64 730 
electrodes. 731 

 732 

Figure 4-2. Correlation 𝜌 between experimentally recorded (Left, black) and interpolated (Right, 733 
green) EMG signals (Right, black). Using the ultra-dense grid of 256 electrodes (2-mm IED) at 30% 734 
MVC, we spatially interpolated down-sampled montages of 4x9 electrodes with an IED of 8 mm and 735 
5x13 electrodes with an IED of 4 mm to generate 5x13 (4-mm IED) and 10x26 (2-mm IED) grids of 736 
electrodes, respectively. In these interpolated grids, 25% of the signals were therefore experimentally 737 
recorded (Right, black) and 75% interpolated (Right, green). After comparing interpolated and 738 
experimentally recorded grids of electrodes, we observed that a better signal reconstruction was 739 
obtained with the 2-mm IED, with a correlation coefficient of ρ = 0.93 ± 0.09 between recorded and 740 
interpolated signals. We identified 4 and 19 motor units from the interpolated grid with a 4-mm and 2-741 
mm IED, respectively, vs. 19 and 24 motor units with the experimentally recorded signals. We only 742 
identified the same motor units as identified with the original less dense grids used to generate the 743 
interpolation. These results indicate that interpolation is not sufficient to reconstruct signals from a 744 
lower spatial sampling. This may be due to the spatial bandwidth which is greater than the inverse of 745 
the minimal interelectrode distance used or to the edge effects of the interpolation due to the relatively 746 
small size of the grid.  747 
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 748 

Figure 4-3. Effect of the electrode density (A, C) and grid size (B, D) on the average PNR across the 749 
identified spike trains at 30% MVC (A, B) and 50% MVC (C, D). The boxplots report the average 750 
PNRs per participant (grey dots) and the median (orange line), quartiles, and 95%-range across 751 
participants. We calculated the average PNR value for the motor unit spike trains (PNR > 28 dB) 752 
identified in each subject and condition. The average PNR across identified motor units increased 753 
together with both the density and the size of the grid. The lowest PNR values were observed with 16 754 
mm-IED (30 ± 1.8 dB at 30% MVC and 29 ± 1.2 dB at 50% MVC) and with a grid of 2 cm2 (31 ± 0.9 755 
dB at 30% MVC and 30 ± 0.9 dB at 50% MVC). The highest PNR was observed with 4 mm-IED and 756 
a grid of 36 cm2 (36 ± 0.7 dB at 30% MVC and 37 ± 0.7 dB at 50% MVC), enabling the operators to 757 
quickly edit the identified motor units. 758 




















