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2 Abstract  

Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously 

compensate for thoracic and pelvic motion during radiotherapy. The purpose of this work is to 

characterize the performance of two MLC leaf-fitting algorithms, direct optimization and piecewise 

optimization, for real-time motion compensation with different plan complexity and tumor 

trajectories.  

Methods: To test the algorithms, both in silico and phantom experiments were performed. The 

phantom experiments were performed on a Trilogy Varian linac and a HexaMotion programmable 

motion platform. High and low modulation VMAT plans for lung and prostate cancer cases were 

used along with eight patient-measured organ-specific trajectories. For both MLC leaf-fitting 

algorithms, the plans were run with their corresponding patient trajectories. To compare algorithms, 

the average exposure errors i.e. the difference in shape between ideal and fitted MLC leaves by the 

algorithm, plan complexity and system latency of each experiment were calculated.  
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Results: Comparison of exposure errors for the in silico and phantom experiments showed minor 

differences between the two algorithms. The average exposure errors for in silico experiments with 

low/high plan complexity were 0.66/0.88 cm
2 

for direct optimization and 0.66/0.88 cm
2 

for piecewise 

optimization respectively. The average exposure errors for the phantom experiments with low/high 

plan complexity were 0.73/1.02 cm
2 

for direct and 0.73/1.02 cm
2 

for piecewise optimization 

respectively. The measured latency for the direct optimization was 226 ±10 ms and for the piecewise 

algorithm was 228 ± 10 ms. In silico and phantom exposure errors quantified for each treatment 

plan demonstrated that the exposure errors from the high plan complexity (0.96 cm
2
 mean, 2.88 cm

2
 

95% percentile) were all significantly different from the low plan complexity (0.70 cm
2 

mean, 2.18 

cm
2 

95% percentile) (p<0.001, two-tailed, Mann-Whitney statistical test). 

 

Conclusions: The comparison between the two leaf-fitting algorithms demonstrated no significant 

differences in exposure errors, neither in silico nor with phantom experiments. This study revealed 

that plan complexity impacts the overall exposure errors significantly more than the difference 

between the algorithms.  

 

Keywords: radiotherapy, real-time, MLC tracking, fitting algorithm 

3 Introduction 

One of the main advantages of radiation therapy as opposed to other types of cancer 

treatment is that the treatment is non-invasive and highly targeted to the tumor. Despite strong 

evidence that the ITV-based planning technique (Internal Target Volume planning, ICRU 62 [1]) 

provides safe radical treatment for stage I non-small cell lung carcinoma, there are no guarantees 

that the tumor will remain within the planned aperture throughout the entire treatment[2, 3]. 
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New delivery approaches have been introduced to improve the targeting of the tumor 

during treatment. These techniques come in various forms, either by shifting the therapeutic beam 

to the tumor using a robotic arm CyberKnife [4, 5], a gimballed linear accelerator (Vero)[6, 7], or the 

multi-leaf collimator (MLC) [8-10] or by adjusting the patient couch (couch tracking)[11]. 

Real-time MLC tracking is a novel technique that optimizes the leaf positions within the head 

of the linear accelerator to shift the radiation beam multileaf collimator leaves according to tumor 

motion. It has been implemented pre-clinically in several institutions on commercial linear 

accelerators [12-14] or developed into in-house control software and leaf-fitting algorithms [8, 10, 

12, 15-17]. Real-time MLC tracking has been clinically pioneered with three clinical trials leading to 

the first MLC tracking treatment for prostate[18-20] and stereotactic lung[21] with results reported 

in previous publications [19, 21]  

The current clinically used version of MLC tracking relies on a leaf-fitting optimization 

algorithm (also known as “MLC tracking algorithm”) named direct optimization algorithm [22]. A 

recent publication by Moore et al. [17] introduced an alternative MLC tracking algorithm named 

piecewise optimization algorithm. With the current design of the piecewise algorithm, Moore et al. 

investigated its performances in silico using standard tumor motion (three patients) and Intensity-

Modulated Radiation Therapy (IMRT) plans. However, in silico tests do not always reflect the real-life 

clinical situation. For that reason, their respective performances should be tested utilizing a linear 

accelerator with a broad range of tumor motions and MLC plan complexity.  

To allow a thorough performance comparison between both algorithms in a clinical setting, 

the piecewise algorithm was implemented in the clinical version of the MLC tracking software. The 

aim of this work is to characterize the performance of two MLC leaf-fitting algorithms used in real-

time motion compensation. This will be done both in silico and experimentally, spanning a range of 

tumor motions and treatment plans with varying degree of MLC modulation.  
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The significance of this paper is that it is the first to investigate and experimentally compare 

two MLC tracking algorithms in the identical clinical setting on a linear accelerator. 

 

4 Method 

4.1 Principle of multi-leaf collimator tracking algorithms 

MLC tracking is operated via an optimization algorithm tasked with finding the best-fitted 

leaf positions given a set of various constraints (finite leaf width and speed), or constraints set up by 

the user prior to treatment delivery, such as prescribing various tolerances or radiobiological 

properties to the organs-at-risk to avoid excessive overdosing. 

 The mechanism for managing these set-up constraints differs between the direct and 

piecewise optimization algorithm. The different components of the direct optimization algorithm 

can be found in Ruan et al. [22] while more extensive explanations on the piecewise algorithm can 

be found in Moore et al. [17]. Although both algorithms allow the MLC leaf positions to be optimized 

according to the radio-sensitivity factor attributed to different OAR (connoted as   and   constraints 

in the respective papers [17, 22]), each algorithm deals with spatial variance differently. The 

optimization process is operated for the direct optimization on a pixel basis within the beam’s eye 

view, therefore relying on a two-dimensional map of the organs.  

The main difference between the two algorithms is that the piecewise algorithm deals with 

spatial variance by having an arbitrary number of volumetric ROI (Regions of Interest), hence 

accounting for the radio-sensitivity in three dimensions. In both cases, this implies that an a priori 

knowledge of the position and volume of OAR is available prior to treatment, or that each OAR is 

being localized in real-time during the treatment delivery.  
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The second difference is the way each algorithm deals with the quantification of exposure 

area that is sought to be minimized. For the direct optimization, the cost function is integrated both 

along and perpendicular to the leaf motion, as opposed to the piecewise algorithm where the 

algorithm resolves the integration linearly in one direction, solely along the leaf motion direction. 

Linear integral implicates that the algorithm is expected to converge faster toward a solution with 

the piecewise algorithm given equivalent set of constraints.  

 

4.2 Experiments to assess and compare the algorithm performances 

To characterize the performances of the algorithms, a series of in silico simulations and 

phantom experiments were performed. Both algorithms were tested under identical conditions 

assuming homogenous dose conditions: the target is considered as a rigid, non-deformable body and 

the underdose and overdose weights are set to be equal. Variables included the tumor motion, 

treatment site and plan complexity. Comparison of algorithm performance was based on exposure 

errors, plan complexity and the system latency. Figure 1 provides an overview of the method to 

assess the performance of each algorithm both in silico and experimentally on a linear accelerator. 

Further details are provided below. 

 

4.2.1 In silico and phantom experiments 

The in silico experiments were performed on a Latitude E7450 i7 2.60GHz Dell 16Gb RAM 

using an MLC simulator[23]. The tumor motion traces were imported into the simulator as text files. 

The DICOM plan was read by the software and the treatment delivery was simulated. The simulator 

leaf speed was limited to 3.6 cm/s being the leaf speed of the actual linear accelerator.  
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The phantom experiments were performed on a Trilogy (Varian, Palo Alto, USA) linear 

accelerator. Tumor motion traces were loaded into the HexaMotion programmable motion platform 

(Scandidos, Uppsala, Sweden) and triggered to start 10 seconds before the beginning of the beam 

delivery to allow training of the prediction algorithm. Calypso electromagnetic transponders (Varian 

Medical System, Palo Alto, USA) were embedded into the HexaMotion platform, with a research 

version of the Calypso system sending the target position to the MLC tracking system. The kernel 

density estimation algorithm[24] currently used clinically was used for the lung trajectories. 

 

4.2.2 Tumor motion 

To span the type of tumor motion observed during radiation therapy, thoracic and pelvic 

tumor motion traces were selected from published databases to be characteristic three-dimensional 

(3D) motion patterns for those sites. Four types of motion were chosen for the lung [25] from a 

CyberKnife study, and four motion patterns for the prostate [26] obtained from a study with patients 

implanted with Calypso electromagnetic transponders. These tumor motion traces were categorized 

and named according to their characteristic pattern in previous study. Thoracic motion patterns 

were categorized as typical tumor motion, high frequency breathing, a predominantly lateral motion 

and characterized baseline shift. The represented prostate motion patterns were continuous drift, 

high frequency excursions, erratic tumor motion and stable tumor position. 

 

4.2.3 Treatment plans 

For each clinical site (lung and prostate), a selection of treatment plans used for previous 

MLC tracking experiments[27] were delivered that differed in MLC modulation to span the plan 

complexity expected during clinical practice. Two plans, low and highly modulated VMAT plan, were 

selected for each site, by varying the set of competitive objectives on the target and OARs. All arcs 
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spanned a 358 revolution with the collimator set at 90 degrees (i.e. with the leaves parallel to 

longitudinal target motion). All plans were prescribed to deliver 2 Gy to 95% of the Planning Target 

Volume (PTV).  

 

4.2.4 Evaluation of plan complexity 

With MLC tracking, the plan complexity is known to complicate the task of the algorithm for the 

leaves to reach the desired positions [28, 29]. Therefore, for each of the four plans lung/prostate 

and modulation high/low modulations, their complexity needed to be quantified. The plan 

complexity was evaluated based on four parameters:  

- average distance to adjacent leaves (ALDw[29]), previously shown to correlate with MLC 

tracking performance[28] 

- The average leaf travel for each plan, considering solely the leaves that contribute to the 

open leaves aperture[28]. 

- The average area over circumference     [28] with formula                                       

- the VMAT modulation score (MCs) by Masi et al.[30] 

 

4.2.5  Measuring the system latency  

MLC tracking latency represents the inherent time delay between the tumor motion and the 

finished movement of the leaves to align the beam and the tumor. While execution of both MLC 

tracking algorithms possesses some inherent amount of latency, it is expected that a faster 

algorithm will be able to reduce the overall system latency.  
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The latency was evaluated using the set-up described in Sawant et al.[31]. A ball bearing was 

moving in a superior-inferior direction along the parallel motion of a circular shape radiation field 

during which EPID images were acquired at 15 Hz operated on the computer console equipped with 

a 2.27 GHz Intel Xeon E5520 processor and 4 GB RAM. The ball bearing was placed onto the 

HexaMotion platform embedded with the Calypso electromagnetic beacons. For each optimization 

algorithm, EPID projections were obtained over 10 periods. Since both the ball bearing and the 

leaves move in a sinusoidal motion, the two structures were segmented from the EPID and a 

sinusoidal fit was used to calculate the temporal offset between the centroid of the ball and the MLC 

aperture. The latency was then calculated as the time delay between the ball position and the 

segmented MLC aperture.  

 

4.3 Comparing MLC tracking algorithm performances based on leaf-fitting exposure errors  

To compare both performances, the exposure errors (overdose + underdose) were 

quantified in the beam’s eye view using a framework developed by Poulsen et al.[32].  

The mismatched area between the actual and planned MLC aperture represents the total 

amount of exposure errors which can be separated into individual sources of errors, namely the 

exposure errors due to width of the leaves, their speed and prediction algorithm errors when in use.  

For each experiment, the exposure errors were computed using the fitted MLC positions 

obtained from the MLC tracking software. The fitted MLC positions corresponded to the given MLC 

positions fitted by the algorithm, thereby accounting for the width of the leaves but regardless of 

their physical speed. Focusing solely on the fitted MLC position dismisses any potential source of 

uncertainties allowing for a more direct comparison between the algorithms.  
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For each paired-experiment, the exposure errors throughout the treatment arc were compared 

between each other using the Pearson correlation coefficient and root-mean-square error to 

evaluate the differences in exposure errors for each control point. Figure 2 provides an example of 

the exposure errors for a “paired experiment”, representing identical experimental conditions (same 

plan and tumor). For each experiment, these exposure errors were computed using the resulting 

tumor tracking logs and fitted MLC position updated at 30Hz into text files. Exposure error 

computation was achieved using MATLAB (R2017a, Math Works).  

 

5 Results 

5.1 Quantification of exposure errors for each optimization algorithm 

The average exposure errors for in silico low/high modulation were 0.66/0.88 cm
2
 for direct 

optimization and 0.66/0.88 cm
2
 for piecewise optimization. For the phantom experiment it was 

0.73/1.02 cm
2
 for direct and 0.73/1.02 cm

2
 for piecewise optimization. The side-by-side exposure 

errors displayed in Figure 3 suggests that both algorithms performed equivalently spanning a large 

range of tumor motion, plan complexity and treatment site.  

The analysis of the in silico experiments demonstrated that the Pearson correlation 

coefficient for both algorithms is higher than r = 0.96 for all sets of organs and trajectories. The 

similar data obtained during linac experiments also showed strong correlation (r > 0.9) in most cases. 

The mean root-mean square errors (RMSE) between paired algorithms were 0.10 cm
2
 for the in silico 

and 0.18 cm
2
 for the phantom experiments. High correlation and small RMSE error suggest strong 

relationship between paired experiment results for all types of trajectory and plan complexity, 

indicating that both algorithms performed equivalently.  
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5.2 Relationship between plan complexity and exposure errors 

The quantified simulated and phantom experiment exposure errors for each treatment plan 

established that the exposure errors from the high modulation plan (0.96 cm
2
, 2.88 cm

2
 95% 

percentile) were all significantly different from the low modulation (0.70 cm
2
, 2.18 cm

2
 95% 

percentile) (p<0.001, two-tailed, Mann-Whitney statistical test). The descriptive metrics used to 

quantify the plan complexity are summarized in Table 1. 

The average distance to adjacent leaves and leaf travel distance was shown to increase with 

plan complexity while the modulation score (MCs) and relative area over circumference decreases 

with plan complexity. These results provide further evidence of the impact of treatment complexity 

on the exposure errors. 

 

5.3 Latency 

The latency for the direct optimization was 226 ± 10 ms and for the piecewise algorithm 228 

± 10 ms. These physical latencies can be compared with the fitting latency within the software. 

Across all the plans and tumor motion, the in silico fitting latency for the direct optimization 

algorithm was 12.2 ms ±5 ms, compared with the piecewise algorithm computed as 3.1 ms ± 1 ms. 

Despite these differences, the fitting time between algorithms did not impact the overall latency of 

the experimental set-up, only capable of detecting uncertainties within ±10 ms.  

6 Discussion 

The goal of this study was to characterize the performance of two multi-leaf collimator 

tracking algorithms for radiotherapy in a realistic simulated and clinical environment. Both 

algorithms were tested alternatively in silico and experimentally on a linear accelerator for the range 

of organ motion and plan complexity that may be expected during clinical practice.  
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This is the first time that two MLC tracking algorithms were experimentally compared in the 

identical clinical setting on a linear accelerator. Moore et al. [1] tested the performances of the 

piecewise algorithm in silico with IMRT plans as a proof of concept. However, leaf-fitting is one part 

of the larger MLC tracking framework, and while in silico validation is a valuable tool to demonstrate 

proof-of-concept, the ultimate test is experimental investigation. Experimental investigation 

captures the impact of the leaf-fitting algorithm with other software and hardware sub-systems (e.g. 

compatibility issues with the Calypso tracking system, error catching, beam-hold assertion or 

constant rotating gantry during VMAT). For these reasons, this paper presents the first empirical 

comparison between the two algorithms. 

We found that the plan complexity and tumor motion patterns have a much larger impact 

on dosimetric fidelity than the leaf-fitting algorithms. The implication is that there are bigger gains to 

be made by improved planning than developing more complex or faster algorithms. 

The implementation and development of faster MLC tracking algorithms is therefore 

potentially marginalized by the prerequisite to reduce plan complexity or improve the hardware 

capabilities. Hardware enhancement has been investigated under diverse forms. Pommer et al. [28] 

investigated the dosimetric impact of finer leaves by testing alternatively a Varian Novalis Tx with 

Millennium MLC (5 mm leaf with) and High-Definition MLC (2.5 mm leaf width). Using reflective 

markers and the ExacTrac (Brainlab, Germany) to provide positional input to the tracking system, 

they found that finer leaves improved the tracking accuracy compared with 5 mm leaf width. The 

Varian TrueBeam system equipped with High-Definition MLC also provides MLC tracking capabilities 

in developer mode, but no performance analysis or dosimetric comparisons with other systems have 

been published to date. 

Falk et al. [29] found that leaf position constraints can be set up within the treatment 

planning system during planning optimization to limit the movement of the leaves during planning. 

Other hardware enhancement, such as dynamic alignment of the collimator angle [33], hybrid 
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couch-MLC tracking strategies [34] improves MLC tracking accuracy by reducing the exposure errors 

for both prostate and lung.  

 

Using a 2D time-resolved framework for performance analysis provides a fast and reliable 

comparison of exposure errors. This method offers a point-by-point analysis that conceptually 

facilitates the search of exposure errors and allows a straightforward comparison between multiple 

plan parameters within a single fixed analysis framework. Also, the analysis of exposure errors for 

MLC tracking has been shown to be correlated with dosimetric errors for lung and prostate [32, 35] 

using gamma failure and root-mean-square errors.  

An application where MLC tracking is uniquely capable of motion compensation is tracking 

deforming targets and deforming systems, e.g. a primary tumor and regional nodes for locally 

advanced lung and prostate cancer radiotherapy. Preliminary studies using the direct optimization 

algorithm for this problem have investigated experimental target deformation and multi-target 

tracking[36]. These experiments have been carried out on a linear accelerator using phantoms by 

mapping the deformation field in the linear accelerator beam’s eye view and optimizing the fitting 

process accordingly. However, both algorithms could be further investigated for these complex 

treatments of the future. 

The treatment plans and the tumor motion traces are included as supplementary materials 

to allow other groups to benchmark their algorithms against the results shown here.  

7 Conclusion  

The performance of two MLC tracking algorithms was characterized and compared using a 

2D time-resolved framework in a clinical realistic scenario. The comparison was based on the 

quantification of fitted exposure errors attributed by the optimization algorithm solely, regardless of 

the speed of the leaves. Our results showed that the two algorithms performed similarly and provide 
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equivalent quality-of-fit for the scenarios evaluated. The main source of error can be attributed to 

the complexity of the plan, quantified prior to plan delivery, which was shown to greatly impact on 

the MLC tracking accuracy. 

 

7. Supplementary materials 

All the treatment plans and tumor motion traces used in this manuscript can be downloaded from 

the following link: 

https://cloudstor.aarnet.edu.au/plus/s/cC7Jy0LrfH2SiAz 

 

8. Figure Legend 

 

Figure 1. Performance of each algorithm was characterized by two sets of experiments, in silico and 

phantom, conducted for two specific target scenarios (lung and prostate) combining different sets of 

plan complexities (high and low) and trajectories (baseline shift, high frequency etc.). The exposure 

errors were calculated for each scenario. 

 

Figure 2. For each scenario, the exposure errors were compared for each set of paired experiments 

to compare the piecewise algorithm against the direct optimization.  

 

Figure 3. Leaf-fitting exposure errors for the direct (grey) and piecewise (red) optimization for both 

in silico and phantom experiment (delivered). The Pearson correlation coefficient (r) and the root 

mean square error (RMSE) are provided for each paired-experiment showing that the sum of 

exposure errors is equivalent given any tumor motion, organ and plan complexity. 

 

Table 1. Summary of the plan metric to assess the plan complexity of each of the four plans. 
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Table 1. Summary of the plan metric to assess the plan complexity of each of the four plans. 

  Lung Prostate 

  High Modulation Low Modulation High Modulation Low Modulation 

Field MU 596 342 737 422 

ALDw
a
 0.71 cm 0.20 cm 1.40 cm 0.70 cm 

Leaf travel 0.19 cm 0.04 cm 0.30 cm 0.22 cm 

AoC
b
 0.34 0.75 0.49 0.92 

MCS 0.07 0.17 0.15 0.28 

 

a
Average distance to adjacent leaves, MU weighted 

b
Area over Circumference  

 

  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

 

 

 

 

 

 
  



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

 


