9 research outputs found

    Learning Raw Image Denoising with Bayer Pattern Unification and Bayer Preserving Augmentation

    Full text link
    In this paper, we present new data pre-processing and augmentation techniques for DNN-based raw image denoising. Compared with traditional RGB image denoising, performing this task on direct camera sensor readings presents new challenges such as how to effectively handle various Bayer patterns from different data sources, and subsequently how to perform valid data augmentation with raw images. To address the first problem, we propose a Bayer pattern unification (BayerUnify) method to unify different Bayer patterns. This allows us to fully utilize a heterogeneous dataset to train a single denoising model instead of training one model for each pattern. Furthermore, while it is essential to augment the dataset to improve model generalization and performance, we discovered that it is error-prone to modify raw images by adapting augmentation methods designed for RGB images. Towards this end, we present a Bayer preserving augmentation (BayerAug) method as an effective approach for raw image augmentation. Combining these data processing technqiues with a modified U-Net, our method achieves a PSNR of 52.11 and a SSIM of 0.9969 in NTIRE 2019 Real Image Denoising Challenge, demonstrating the state-of-the-art performance. Our code is available at https://github.com/Jiaming-Liu/BayerUnifyAug.Comment: Accepted by CVPRW 201

    Online Critical Unit Detection and Power System Security Control: An Instance-Level Feature Importance Analysis Approach

    No full text
    Rapid and accurate detection of critical units is crucial for the security control of power systems, ensuring reliable and continuous operation. Inspired by the advantages of data-driven techniques, this paper proposes an integrated deep learning framework of dynamic security assessment, critical unit detection, and security control. In the proposed framework, a black-box deep learning model is utilized to evaluate the dynamic security of power systems. Then, the predictions of the model for specific operating conditions are interpreted by instance-level feature importance analysis. Furthermore, the critical units are detected by reasonable local interpretation, and the security control scheme is extracted with a sequential adjustment strategy according to the results of interpretation. The numerical simulations on the CEPRI36 benchmark system and the IEEE 118-bus system verified that our proposed framework is fast and accurate for specific operating conditions and, thereby, is a viable approach for online security control of power systems

    NTIRE 2019 Challenge on Real Image Denoising: Methods and Results

    No full text
    This paper reviews the NTIRE 2019 challenge on real image denoising with focus on the proposed methods and their results. The challenge has two tracks for quantitatively evaluating image denoising performance in (1) the Bayer- pattern raw-RGB and (2) the standard RGB (sRGB) color spaces. The tracks had 216 and 220 registered participants, respectively. A total of 15 teams, proposing 17 methods, competed in the final phase of the challenge. The proposed methods by the 15 teams represent the current state-of-the- art performance in image denoising targeting real noisy im- ages
    corecore