356 research outputs found
Metapopulation perspective to institutional fit : maintenance of dynamic habitat networks
Species living in metapopulations depend on connected habitat networks for their survival. If habitat networks experience fast temporal dynamics, species conservation requires preventing habitat discontinuities that could lead to metapopulation extinctions. However, few institutional solutions exist for the maintenance of spatiotemporally dynamic habitat networks outside of protected areas. To explore this often neglected problem, we studied the institutional fit of false heath fritillary (Melitaea diamina) conservation in Finland from the perspective of conservation institutions' ability to manage early successional habitat availability for this endangered species. We identified four institutional arrangements that enable effective conservation management of dynamic habitat networks: (1) acknowledgment of habitat dynamics, (2) monitoring of and responding to changes in the habitat network, (3) management of resources for fluctuating resource needs, and (4) scaling of activities through flexible collaborations. These arrangements provide the institutional flexibility needed for responding to temporal changes in habitat availability.Peer reviewe
Bird assemblages in a Malagasy forest-agricultural frontier : Effects of habitat structure and forest cover
Peer reviewe
Quality of governance and effectiveness of protected areas: crucial concepts for conservation planning
Protected areas (PAs) are a key tool for biodiversity conservation and play a central role in the Convention on Biological Diversity. Recently, the effectiveness of PAs has been questioned, and assessing how effective they are in enabling the future persistence of biodiversity is not trivial. Here, we focus on terrestrial PAs and clarify the terminology related to PA effectiveness, distinguishing between management and ecological aspects. We suggest that the quality of governance affects both aspects of effectiveness but recognize a lack of synthetic understanding of the topic. We present a conceptual framework linking the underlying mechanisms by which the quality of governance affects conservation outcomes in PAs and how this relates to conservation planning. We show that it is crucial to separate pressure and response and how these together will lead to the observed conservation outcomes. We urge for more focused attention on governance factors and in particular more empirical research on how to address causality and how to account for the quality of governance when prioritizing actions. Our framework is linked to the classic concepts of systematic conservation planning and clarifies the strategies available to achieve a comprehensive and effective network of PAs.Peer reviewe
Conservation planning with uncertain climate change projections
Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i) species distributions that shift following climate change, (ii) basic connectivity requirements of species, (iii) alternative climate change scenarios and their impacts, (iv) in the modelling of species distributions, and (v) different levels of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization that accounts simultaneously for the present and potential future distributions of species is achievable without overly jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for amphibians and reptiles in Europe. © 2013 Kujala et al.MC and MBA were funded by the European Commission Seventh Framework Program project European RESPONSES to climate change (grant agreement
number 244092, URL: http://www.responsesproject.eu/).Peer Reviewe
Matching species traits to projected threats and opportunities from climate change
Peer reviewe
Establishment and remodelling of the dendritic cell network in tissues
Conventional dendritic cells (cDCs) are leucocytes that act as sentinel cells, sensing the extracellular environment and initiating immune responses against infection and cancer. cDCs develop from a common progenitor in the bone marrow (BM) that travels via the blood in the form of a pre-cDC to seed tissues. How pre-cDCs colonise different organs, whether this is affected by infection and how BM production is matched to cDC demand in the periphery remains poorly understood. During my PhD I used a mouse model for multicolour fate mapping of cDC progenitors and found that many pre-cDCs and cDCs divide in tissues generating single cDC clones. Upon infection with influenza A virus, lung cDCs increase in number due to accelerated CCR2-dependent recruitment of pre-cDCs from the BM rather than local proliferation, diluting pre-existing clones. This recruitment generates new waves of cDCs in the lung that seem to be necessary for inducing antiviral immunity. Preliminary results using a reporter mouse for DC progenitors show that more cells localise close to BM sinusoids during infection, possibly to favour the rapid release of pre-cDCs into the blood circulation. Interestingly, cancer and vaccine adjuvants also mobilise BM cDC progenitors, demonstrating that this is probably a conserved mechanism by which the cDC network adapts to different challenges. In addition, pre-cDCs can directly sense pathogen-associated molecular patterns via toll-like receptors, which might be necessary for the progenitors to respond to infection or tissue damage. In sum, my results provide evidence for a tightly regulated cDC network that is often organised in clones. However, when a bigger arsenal of cDCs is required, the BM responds by pumping out more pre-cDCs, which is a new component of immunity to infection. More studies might reveal whether CCR2 also drive this phenomenon during cancer and the mechanism underlying pre-cDC exit from the BM
Tuning Proton Conductivity Properties of Lanthanide Amino-Sulfophosphonates-Loaded Nafion Composite Membranes
Polymer-based electrolytes in proton exchange membrane fuel cells (PEMFCs) utilize acidic groups as proton carriers and hydrogen bonding networks as proton-conducting pathways to facilitate proton transport. Crystalline acid-functionalized metal phosphonates are potential proton conductors while maintaining a high hydration degree below 100 °C. This property may be combined with Nafion-like polymers which tend to dehydrate at the operating conditions of PEMFCs [1,2]. In this work, preliminary results of the preparation of lanthanide amino-sulfophosphonates-loaded Nafion composites membranes and the corresponding electrical properties are reported. Synthesis conditions of lanthanide derivatives were optimized following a hightrough-put screening at 140 °C. Their crystal structures, solved from synchrotron X-ray powder diffraction data, corresponds to layered frameworks where the acidic groups, -CPO3H or -SO3H, point toward the interlamellar region interacting by H-bond with the lattice water. The composites were prepared by mixing the metal phosphonates with Nafion solution at different loadings. The membranes were characterized by SEM, XRD and FT-IR. A study of the proton conductivity as a function of the composite membranes was carried out at 90 °C and 95% RH. Referencias [1] Y. Gao, R. Broersen, W. Hageman, N. Yan, M. C. Mittelmeijer-Hazeleger, G. Rothenberg, S. Tanase. J. Mater. Chem. A, 2015, 3, 22347–22352. [2] A. Cabeza, P. Olivera-Pastor, R. M. P. Colodrero. Tailored Organic-Inorganic Materials, Brunet, E., Colón, J.L., Clearfield, A., Eds.; John Wiley & Sons, Inc. 2015; Ch. 4, 137−191.Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
Climate change can cause complex responses in Baltic Sea macroalgae : A systematic review
Estuarine macroalgae are important primary producers in aquatic ecosystems, and often foundation species providing structurally complex habitat. Climate change alters many abiotic factors that affect their long-term persistence and distribution. Here, we review the existing scientific literature on the tolerance of key macroalgal species in the Baltic Sea, the world's largest brackish water body. Elevated temperature is expected to intensify coastal eutrophication, further promoting growth of opportunistic, filamentous species, especially green algae, which are often species associated with intensive filamentous algal blooms. Declining salinities will push the distributions of marine species towards south, which may alter the Baltic Sea community compositions towards a more limnic state. Together with increasing eutrophication trends this may cause losses in marine-originating foundation species such as Fucus, causing severe biodiversity impacts. Experimental results on ocean acidification effects on macroalgae are mixed, with only few studies conducted in the Baltic Sea. We conclude that climate change can alter the structure and functioning of macroalgal ecosystems especially in the northern Baltic coastal areas, and can potentially act synergistically with eutrophication. We briefly discuss potential adaptation measures.Peer reviewe
The role of protected areas in supporting human health : a call to broaden the assessment of conservation outcomes
Ongoing global biodiversity loss has far-reaching consequences for human health and well-being. While protected areas (PAs) have become a major policy instrument for biodiversity conservation, their role in supporting human health remains unclear. Here, we synthesize both positive and negative aspects of PAs on different dimensions of human health and provide several theoretical advances to assess the effectiveness of PAs in promoting human health. We finally identify three major research gaps requiring urgent attention. Implementing an interdisciplinary research program remains a priority to better comprehend the linkages between human health, ecosystem services and conservation policies at global scale. We believe this is key to improve the management of PAs and their surrounding areas and foster co-benefits for biodiversity and human health.Peer reviewe
- …