25 research outputs found

    Generation of a Convalescent Model of Virulent Francisella tularensis Infection for Assessment of Host Requirements for Survival of Tularemia

    Get PDF
    Francisella tularensis is a facultative intracellular bacterium and the causative agent of tularemia. Development of novel vaccines and therapeutics for tularemia has been hampered by the lack of understanding of which immune components are required to survive infection. Defining these requirements for protection against virulent F. tularensis, such as strain SchuS4, has been difficult since experimentally infected animals typically die within 5 days after exposure to as few as 10 bacteria. Such a short mean time to death typically precludes development, and therefore assessment, of immune responses directed against virulent F. tularensis. To enable identification of the components of the immune system that are required for survival of virulent F. tularensis, we developed a convalescent model of tularemia in C57Bl/6 mice using low dose antibiotic therapy in which the host immune response is ultimately responsible for clearance of the bacterium. Using this model we demonstrate αβTCR+ cells, γδTCR+ cells, and B cells are necessary to survive primary SchuS4 infection. Analysis of mice deficient in specific soluble mediators shows that IL-12p40 and IL-12p35 are essential for survival of SchuS4 infection. We also show that IFN-γ is required for survival of SchuS4 infection since mice lacking IFN-γR succumb to disease during the course of antibiotic therapy. Finally, we found that both CD4+ and CD8+ cells are the primary producers of IFN-γand that γδTCR+ cells and NK cells make a minimal contribution toward production of this cytokine throughout infection. Together these data provide a novel model that identifies key cells and cytokines required for survival or exacerbation of infection with virulent F. tularensis and provides evidence that this model will be a useful tool for better understanding the dynamics of tularemia infection

    Genome-Wide Screen for Mycobacterium tuberculosis Genes That Regulate Host Immunity

    Get PDF
    In spite of its highly immunogenic properties, Mycobacterium tuberculosis (Mtb) establishes persistent infection in otherwise healthy individuals, making it one of the most widespread and deadly human pathogens. Mtb's prolonged survival may reflect production of microbial factors that prevent even more vigorous immunity (quantitative effect) or that divert the immune response to a non-sterilizing mode (qualitative effect). Disruption of Mtb genes has produced a list of several dozen candidate immunomodulatory factors. Here we used robotic fluorescence microscopy to screen 10,100 loss-of-function transposon mutants of Mtb for their impact on the expression of promoter-reporter constructs for 12 host immune response genes in a mouse macrophage cell line. The screen identified 364 candidate immunoregulatory genes. To illustrate the utility of the candidate list, we confirmed the impact of 35 Mtb mutant strains on expression of endogenous immune response genes in primary macrophages. Detailed analysis focused on a strain of Mtb in which a transposon disrupts Rv0431, a gene encoding a conserved protein of unknown function. This mutant elicited much more macrophage TNFα, IL-12p40 and IL-6 in vitro than wild type Mtb, and was attenuated in the mouse. The mutant list provides a platform for exploring the immunobiology of tuberculosis, for example, by combining immunoregulatory mutations in a candidate vaccine strain

    Endings of Afferent Nerve Fibers. Intrafusal Muscle Fibers

    No full text

    Reasons for Not Intensifying Medications: Differentiating “Clinical Inertia” from Appropriate Care

    No full text
    BACKGROUND: Clinical inertia has been defined as inaction by physicians caring for patients with uncontrolled risk factors such as blood pressure. Some have proposed that it accounts for up to 80% of cardiovascular events, potentially an important quality problem. However, reasons for so-called clinical inertia are poorly understood. OBJECTIVE: To derive an empiric conceptual model of clinical inertia as a subset of all clinical inactions from the physician perspective. METHODS: We used Nominal Group panels of practicing physicians to identify reasons why they do not intensify medications when seeing an established patient with uncontrolled blood pressure. MEASUREMENTS AND MAIN RESULTS: We stopped at 2 groups (N = 6 and 7, respectively) because of the high degree of agreement on reasons for not intensifying, indicating saturation. A third group of clinicians (N = 9) independently sorted the reasons generated by the Nominal Groups. Using multidimensional scaling and hierarchical cluster analysis, we translated the sorting results into a cognitive map that represents an empirically derived model of clinical inaction from the physician\u27s perspective. The model shows that much inaction may in fact be clinically appropriate care. CONCLUSIONS/RECOMMENDATIONS: Many reasons offered by physicians for not intensifying medications suggest that low rates of intensification do not necessarily reflect poor quality of care. The empirically derived model of clinical inaction can be used as a guide to construct performance measures for monitoring clinical inertia that better focus on true quality problems

    Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America

    Get PDF
    Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.International Development Research Centre/[AC3]/IDRC/CanadaUniversidad de Costa Rica/[805-B6-143]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-227]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-600]/UCR/Costa RicaMinisterio de Ciencia, Tecnología y Telecomunicaciones/[]/MICIT/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI
    corecore