159 research outputs found

    Bisimple monogenic orthodox semigroups

    Full text link
    We give a complete description of the structure of all bisimple orthodox semigroups generated by two mutually inverse elements

    Lattice isomorphisms of bisimple monogenic orthodox semigroups

    Full text link
    Using the classification and description of the structure of bisimple monogenic orthodox semigroups obtained in \cite{key10}, we prove that every bisimple orthodox semigroup generated by a pair of mutually inverse elements of infinite order is strongly determined by the lattice of its subsemigroups in the class of all semigroups. This theorem substantially extends an earlier result of \cite{key25} stating that the bicyclic semigroup is strongly lattice determined.Comment: Semigroup Forum (published online: 15 April 2011

    Theory of Mind training in children with autism: a randomized controlled trial

    Get PDF

    Replication, Pathogenesis and Transmission of Pandemic (H1N1) 2009 Virus in Non-Immune Pigs

    Get PDF
    The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1,2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5]

    Casimir Energies for 6D Supergravities Compactified on T_2/Z_N with Wilson Lines

    Full text link
    We compute (as functions of the shape and Wilson-line moduli) the one-loop Casimir energy induced by higher-dimensional supergravities compactified from 6D to 4D on 2-tori, and on some of their Z_N orbifolds. Detailed calculations are given for a 6D scalar field having an arbitrary 6D mass m, and we show how to extend these results to higher-spin fields for supersymmetric 6D theories. Particular attention is paid to regularization issues and to the identification of the divergences of the potential, as well as the dependence of the result on m, including limits for which m^2 A> 1 where A is the volume of the internal 2 dimensions. Our calculation extends those in the literature to very general boundary conditions for fields about the various cycles of these geometries. The results have potential applications towards Supersymmetric Large Extra Dimensions (SLED) as a theory of the Dark Energy. First, they provide an explicit calculation within which to follow the dependence of the result on the mass of the bulk states which travel within the loop, and for heavy masses these results bear out the more general analysis of the UV-sensitivity obtained using heat-kernel methods. Second, because the potentials we find describe the dynamics of the classical flat directions of these compactifications, within SLED they would describe the present-day dynamics of the Dark Energy.Comment: 40 pages, 7 figure

    MSLED, Neutrino Oscillations and the Cosmological Constant

    Full text link
    We explore the implications for neutrino masses and mixings within the minimal version of the supersymmetric large-extra-dimensions scenario (MSLED). This model was proposed in {\tt hep-ph/0404135} to extract the phenomenological implications of the promising recent attempt (in {\tt hep-th/0304256}) to address the cosmological constant problem. Remarkably, we find that the simplest couplings between brane and bulk fermions within this approach can lead to a phenomenologically-viable pattern of neutrino masses and mixings that is also consistent with the supernova bounds which are usually the bane of extra-dimensional neutrino models. Under certain circumstances the MSLED scenario can lead to a lepton mixing (PMNS) matrix close to the so-called bi-maximal or the tri-bimaximal forms (which are known to provide a good description of the neutrino oscillation data). We discuss the implications of MSLED models for neutrino phenomenology.Comment: 38 pages, 1 figure; Reposted with a few additional reference

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure
    • …
    corecore