977 research outputs found

    Expansion of a finite size plasma in vacuum

    Full text link
    The expansion dynamics of a finite size plasma is examined from an analytical perspective. Results regarding the charge distribution as well as the electrostatic potential are presented. The acceleration of the ions and the associated cooling of the electrons that takes place during the plasma expansion is described. An extensive analysis of the transition between the semi infinite and the finite size plasma behaviour is carried out. Finally, a test of the analytical results, performed through numerical simulations, is presented.Comment: 4 pages with 5 figure

    Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse

    Full text link
    The dynamics of electric field generation and radial acceleration of ions by a laser pulse of relativistic intensity propagating in an underdense plasma has been investigated using an one-dimensional electrostatic, ponderomotive model developed to interpret experimental measurements of electric fields [S. Kar et al, New J. Phys. *9*, 402 (2007)]. Ions are spatially focused at the edge of the charge-displacement channel, leading to hydrodynamical breaking, which in turns causes the heating of electrons and an "echo" effect in the electric field. The onset of complete electron depletion in the central region of the channel leads to a smooth transition to a "Coulomb explosion" regime and a saturation of ion acceleration.Comment: 9 pages, 7 figures, final revised version, to appear on Plasma Phys. Contr. Fus., special issue on "Laser and Plasma Accelerators", scheduled for February, 200

    Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles

    Get PDF
    Abstract. The variance-covariance matrix (VCM) and the averaging kernel matrix (AKM) are widely used tools to characterize atmospheric vertical profiles retrieved from remote sensing measurements. Accurate estimation of these quantities is essential for both the evaluation of the quality of the retrieved profiles and for the correct use of the profiles themselves in subsequent applications such as data comparison, data assimilation and data fusion. We propose a new method to estimate the VCM and AKM of vertical profiles retrieved using the Levenberg-Marquardt iterative technique. We apply the new method to the inversion of simulated limb emission measurements. Then we compare the obtained VCM and AKM with those resulting from other methods already published in the literature and with accurate estimates derived using statistical and numerical estimators. The proposed method accounts for all the iterations done in the inversion and provides the most accurate VCM and AKM. Furthermore, it correctly estimates the VCM and the AKM also if the retrieval iterations are stopped when a physically meaningful convergence criterion is fulfilled, i.e. before achievement of the numerical convergence at machine precision. The method can be easily implemented in any Levenberg-Marquardt iterative retrieval scheme, either constrained or unconstrained, without significant computational overhead

    Ion dynamics and coherent structure formation following laser pulse self-channeling

    Full text link
    The propagation of a superintense laser pulse in an underdense, inhomogeneous plasma has been studied numerically by two-dimensional particle-in-cell simulations on a time scale extending up to several picoseconds. The effects of the ion dynamics following the charge-displacement self-channeling of the laser pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of the plasma channel walls, causing an inversion of the radial space-charge field and the filamentation of the laser pulse. At later times a number of long-lived, quasi-periodic field structures are observed and their dynamics is characterized with high resolution. Inside the plasma channel, a pattern of electric and magnetic fields resembling both soliton- and vortex-like structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download a high-resolution version), to appear in Plasma Physics and Controlled Fusion (Dec. 2007), special issue containing invited papers from the 34th EPS Conference on Plasma Physics (Warsaw, July 2007

    Comment on “Synergetic use of IASI profile and TROPOMI total-column level 2 methane retrieval products” by Schneider et al. (2022)

    Get PDF
    A great interest is growing about methods that combine measurements from two or more instruments that observe the same species either in different spectral regions or with different geometries. Recently, a method based on the Kalman filter has been proposed to combine IASI (Infrared Atmospheric Sounding Interferometer) and TROPOMI (TROPOspheric Monitoring Instrument) methane products. We show that this method is equivalent to the Complete Data Fusion method. Therefore, the choice between these two methods is driven only by the advantages of the different implementations. From the comparison of the two methods, a generalization of the Complete Data Fusion formula, which is valid also in the case that the noise error covariance matrices of the fused products are singular, is derived. This comment uses several equations reported in the preprint version of Schneider et al. (2022); therefore, reference is made to the preprint version of this paper.</p

    Technical Note: Continuity of MIPAS-ENVISAT ozone data quality from full- to reduced-spectral-resolution operation mode

    Get PDF
    International audienceMIPAS (Michelson Interferometer for Passive Atmospheric Sounding) is operating on the ENVIronmental SATellite (ENVISAT) since March 2002. After two years of nearly continuous limb scanning measurements, at the end of March 2004, the instrument was stopped due to problems with the mirror drive of the interferometer. Operations with reduced maximum path difference, corresponding to both a reduced-spectral-resolution and a shorter measurement time, were resumed on January 2005. In order to exploit the reduction in measurement time, the measurement scenario was changed adopting a finer vertical limb scanning. The change of spectral resolution and of measurement scenario entailed an update of the data processing strategy. The aim of this paper is the assessment of the differences in the quality of the MIPAS ozone data acquired before and after the stop of the operations. Two sets of MIPAS ozone profiles acquired in 2003?2004 (full-resolution measurements) and in 2005?2006 (reduced-resolution measurements) are compared with collocated ozone profiles obtained by GOMOS (Global Ozone Monitoring by Occultation of Stars), itself also onboard ENVISAT. The continuity of the GOMOS data quality allows to assess a possible discontinuity of the MIPAS performances. The relative bias and precision of MIPAS ozone profiles with respect to the GOMOS ones have been compared for the measurements acquired before and after the stop of the MIPAS operations. The results of the comparison show that, in general, the quality of the MIPAS ozone profiles retrieved from reduced-resolution measurements is comparable or better than that obtained from the full-resolution dataset. The only significant change in MIPAS performances is observed at pressures around 2 hPa, where the relative bias of the instruments increases by a factor of 2 from the 2003?2004 to 2005?2006 measurements

    Technical Note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles

    Get PDF
    International audienceThe retrieval of concentration vertical profiles of atmospheric constituents from spectroscopic measurements is often an ill-conditioned problem and regularization methods are frequently used to improve its stability. Recently a new method, that provides a good compromise between precision and vertical resolution, was proposed to determine analytically the value of the regularization parameter. This method is applied for the first time to real measurements with its implementation in the operational retrieval code of the satellite limb-emission measurements of the MIPAS instrument and its performances are quantitatively analyzed. The adopted regularization improves the stability of the retrieval providing smooth profiles without major degradation of the vertical resolution. In the analyzed measurements the retrieval procedure provides a vertical resolution that, in the troposphere and low stratosphere, is smaller than the vertical field of view of the instrument

    Harmonic generation by atoms in circularly polarized two-color laser fields with coplanar polarizations and commensurate frequencies

    Get PDF
    The generation of harmonics by atoms or ions in a two-color, coplanar field configuration with commensurate frequencies is investigated through both, an analytical calculation based on the Lewenstein model and the numerical ab initio solution of the time-dependent Schroedinger equation of a two-dimensional model ion. Through the analytical model, selection rules for the harmonic orders in this field configuration, a generalized cut-off for the harmonic spectra, and an integral expression for the harmonic dipole strength is provided. The numerical results are employed to test the predictions of the analytical model. The scaling of the cut-off as a function of both, one of the laser intensities and frequency ratio η\eta, as well as entire spectra for different η\eta and laser intensities are presented and analyzed. The theoretical cut-off is found to be an upper limit for the numerical results. Other discrepancies between analytical model and numerical results are clarified by taking into account the probabilities of the absorption processes involved.Comment: 8 figure

    Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration

    Full text link
    The search for symmetry as an unusual yet profoundly appealing phenomenon, and the origin of regular, repeating configuration patterns have long been a central focus of complexity science and physics. To better grasp and understand symmetry of configurations in decentralized toroidal architectures, we employ group-theoretic methods, which allow us to identify and enumerate these inputs, and argue about irreversible system behaviors with undesired effects on many computational problems. The concept of so-called configuration shift-symmetry is applied to two-dimensional cellular automata as an ideal model of computation. Regardless of the transition function, the results show the universal insolvability of crucial distributed tasks, such as leader election, pattern recognition, hashing, and encryption. By using compact enumeration formulas and bounding the number of shift-symmetric configurations for a given lattice size, we efficiently calculate the probability of a configuration being shift-symmetric for a uniform or density-uniform distribution. Further, we devise an algorithm detecting the presence of shift-symmetry in a configuration. Given the resource constraints, the enumeration and probability formulas can directly help to lower the minimal expected error and provide recommendations for system's size and initialization. Besides cellular automata, the shift-symmetry analysis can be used to study the non-linear behavior in various synchronous rule-based systems that include inference engines, Boolean networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice
    • …
    corecore