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Abstract. The variance-covariance matrix (VCM) and the 1 Introduction
averaging kernel matrix (AKM) are widely used tools to
characterize atmospheric vertical profiles retrieved from re-

. L The retrieval of the vertical distribution of an atmospheric pa-
mote sensing measurements. Accurate estimation of these

uantities is essential for both the evaluation of the ual_rameter from remote sensing measurements is generally per-
g : . aUar ¢ rmed by fitting forward model simulations to the available
ity of the retrieved profiles and for the correct use of the

profiles themselves in subsequent applications such as da?abservatlons Rodgers 200Q Twomey, 1977. The fitting

. P : grocedure consists in the minimization of a cost function,
comparison, data assimilation and data fusion. We propose

new method to estimate the VCM and AKM of vertical pro- generally made of th“e s_umma'u?n_of two terms. Th_e first
term, usually called “chi-square”, is the squared weighted

files retrieved using the Levenberg-Marquardt iterative tech-norm of the residuals, i.e. the square of the norm of the dif-

nique. We apply the new method to the inversion of sim- ferences between observations and simulations, the weight

ulated limb emission measurements. Then we compare thB . ided by the i : . ?
obtained VCM and AKM with those resulting from other eing provided by the inverse variance-covariance matrix
VCM) of the observations. The second term of the cost

methods already published in the literature and with accurat unction, if any, is usually a constraint to the solution. This

estimates derived using statistical and numerical estimators[.erm can be used for example to penalize solutions that ei-
The proposed method accounts for all the iterations don%heroscillate beyond acceptable limiBowman et al. 2006
in the inversion and provides the most accurate VCM andCeccherin,i 2005 Doicu et al, 2004 Ridolfi and S heri
AKM. Furthermore, it correctly estimates the VCM and the 2009 Schimpf and Schreieﬂé9? Sofieva et al 200% or

AKM also if the retrieval iterations are stopped when a phys'deviate from an a-prioriRodgers 2000. Since the forward

ically meaningful convergence criterion is fulfilled, i.e. be- . . ) .
model is usually a non-linear function of the atmospheric

fore achievement of the numerical convergence at machine . . . . .
S onverg : State vector, an iterative method is needed to find the min-
precision. The method can be easily implemented in any. . . ;
. . ; ) imum of the cost function. In case of weak non-linearity of

Levenberg-Marquardt iterative retrieval scheme, either con-,

) . . o : the forward model, the Gauss-Newton (GN) technique can
strained or unconstrained, without significant computauonalb full lied I he oth
overhead. e successfully appliedPfess et al.1992. On the other

hand, if the forward model is significantly non-linear, a GN
step can lead to an increase rather than to a decrease of the
cost function. This situation, often occurring in the retrieval

of vertical profiles of atmospheric parameters, is generally
overcome by applying the Levenberg-Marquardt (LM) modi-
fication (Levenberg1944 Marquardf 1963. This modifica-

Correspondence tdS. Ceccherini tion combines the steepest desc@egs et al1992) and the
BY

(s.ceccherini@ifac.cnr.it) GN methods by damping the GN iteration step. A damping
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factor is adjusted at each iteration in such a way that if the In this paper the methods &fress et al(1992 and of

step leads to a reduction of the cost-function the dampingCeccherini et al(2007 and the new proposed one are ap-

factor is decreased, making the next step closer to the Glied to the retrieval of the ozone vertical profile from mid-

step. Whereas, if the step leads to an increase of the costfrared limb emission simulated measurements. These three

function the iteration is repeated with an increased dampingesults are compared to those obtained using, in the case of

factor, producing a step closer to the gradient descent directhe VCM, the statistical estimator applied to a set of simu-

tion. lated retrievals and, in the case of AKM, the numerical cal-
In principle, if a minimum of the cost function has been culation of the derivatives.

approached close enough it should be possible to reduce the The paper is organized as follows. In Settve describe

LM damping factor to a negligibly small value and reach the theory of the new proposed method. In S8atie apply

the convergence with a final GN step. This is possible inthe new method and the other two methods available from

well-conditioned retrievals but not in both ill-posed and ill- the literature to simulated measurements and compare the

conditioned retrievals. In ill-posed retrievals the minimum of resulting VCMs and AKMs to those derived using the sta-

the cost function does not correspond to an unique solutiortistical estimator and the numerical derivatives, respectively.

but to a whole class of solutions. In this case it is not possi-In Sect.4 we draw the conclusions of the work.

ble to perform a final GN step because this involves the in-

version of a singular matrix. In ill-conditioned retrievals the

matrix to be inverted is not singular but its condition num- 2

ber IS _too Iargel{fress et a,l.1.993_and the inversion greatly Consistent with the notations adopted Bpdgers(2000,

amplifies numerical, approximation and measurement errors.

. o .~ “We represent the observations by thedimensional vector
This large error amplification prevents the GN step from find- . : :
. S . s y and the unknown atmospheric state by t#hdimensional
ing the minimum of the cost function. Therefore, in ill-posed

and ill-conditioned retrievals it is not possible to finish the vectorx. The forward modelf (x) provides simulated ob-

iterative procedure with a negligible LM damping factor and servations given the atmospheric state The relationship
the question arises on how to characterize properly the LMbetweenrc andy is
solution. _ _ y=1(x)+e, (1)

The VCM and the averaging kernel matrix (AKM) are
widely used tools to characterize the solution of the retrieval. Wheree is them-dimensional vector containing the experi-
Accurate estimation of these quantities is essential for bottimental errors of the observations, characterized by a VCM
the evaluation of the quality of the retrieved profiles and Sy=(e€”), where the symbol---) denotes the expectation
for their correct use in subsequent applications such as datglue. The solution of the inverse problem is the statein-
comparison Ceccherini et a)l 2003 Cortesi et al. 2007  imizing a cost function usually defined as:
Pougatchev2008 Ridolfi et al, 2007 Rodgers and Conngr 2 T o1 T
2003, data assimilationLahoz et al.2007) and data fusion E=0=f)) S 0= fE)+xa—x) Rxa=x),  (2)
(Ceccherini et a.2009 2010. While the calculation of the  whereR is an xn matrix operator that may be used to con-
VCM and of the AKM is relatively easy in the GN case (see strain the solution towards the shape (using e.g. the first
e.g.Rodgers 2000, in the LM case one must be more cau- and/or the second vertical derivatives, &égolfi and Sgheri

tious. _ 2009 and/or the value of an a-priori estimatg
So far two different methods have been used for the cal- Since f(x) is a non-linear and complicated functionaof

culation of the VCM and AKM of the LM iterative solution. gn analytical solution for the minimum 612 does not exist.

The first one Press et al.1997 calculates these quantities Therefore an iterative method is often used to find the mini-
assuming a negligibly small LM damping in the formula used mum. The iterations are stopped when a pre-defined conver-
to update the state vector at the last iteration. Of course thigence criterion is fulfilled and the final state vectorat the
method involves an approximation that, as we will show in |ast iteration (index) represents the solution of the retrieval.
the following sections, might also be relatively coarse. The |f the forward model is moderately non-linear, the GN

second methodQeccherini et aJ.2007) calculates the VCM  method can be used for the minimizationsdf with the fol-
and the AKM from the formula of the last iteration step, with- |owing iterative formula:

out neglecting the LM damping term. This method is cor- L

rect if the minimum is rea}ched in only one iteration, .whlle Xip1= x,-+<KfSy‘1K,»+R) .

it may also involve a relatively coarse approximation if sev-

eral iterations are required for the minimization. In this paper [KiTS§1(y—f(xi))+R(Xa—xi)], ©)
we introduce an alternative method for the calculation of the

VCM and AKM of the LM solution. The proposed method whereK; is the Jacobian matrix of the forward model calcu-
accounts for both the LM damping term and all the iterationslated atx=x;.

required for the minimization of the cost function.

Theory
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If the forward model is significantly non-linear, the stepin  The elements oA\, the AKM of x,, are defined as the
Eq. 3) can lead to an increase rather than to a decrease daferivatives of the components of the solutignwith respect
the cost functiorg2. In this case it is useful to adopt the LM  to the components of the true profite Sincex, is a function
modification that is based on the following iteration step:  of the observationy that in turn are functions of the true
1 profile x, we can write:

Xiy1 = xi+(KiTS§lKi+R+)»i Di) .

rzﬁzaxr a_yZTrKa (11)
(KIS - fam+Rexax) | @ ox dy dx
= x;+G; (y— f () +M;R(xa—x), where_K is the Jacopian matrix.of the forward model calcu-
_ lated in the true profile. Equations &) and (L1) show that
where we have defined: both the VCM and the AKM depend oh, which in turn,

as shown by Eq.10), depends on the path in the parame-
ter space followed by the minimization procedure, from the
initial guess to the solution. We note however that, if an it-
Gi=MK/S/*, (6)  eration step is done with;=0 (GN iteration) from Egs.5)
and @) we getG;K;+M;R=I and from Eg. 10) it follows
thatT, is independent of the steps performed before the con-
sidered iteration. Therefore, we can say that a GN iteration
resets the memory of the path followed before that iteration.
When exact convergence is reached wexget = x; and
consequently alsd@;;1 =T; (from the definition ofT;).
Substituting this condition in Eq10) and using Eqs5) and
(6) we get:

-1
M,-:(Kfsy—lKiJrRHiD,-) (5)

whereD; is a diagonal matrix with the diagonal elements
equal to the diagonal elements K)fS;lK,- (see e.gPujol,
2007 andA; is a scalar damping factor that depends on the
iteration indexi. The iterations start with a small damping
factor o. At each iteration, if the corrected state, 1 pro-
vides a reduction of the cost function (i&(x;+1)<£2(x;))
then the stater;;1 is accepted and the damping factor for
the next iteration is reduced. If the statg 1 provides an

increase of the cost functioBq(x;+1)>£2(x;)) thenx; 1 is K_ngl _ (K‘Ts;lK‘ n R)T- . (12)
rejected and the iteration is repeated with a larger damping : ’ "
factor.

_ . . . To-1lk .
In order to find the VCMS, of the solutionx, we have to " Well-conditioned retrievals the matrléKl. S Ki +R)

propagate the errarfrom y ontox,. The error vectos, on  an be inverted and we get the solution:

x, can be written as: 1
Tin= (KIS +R) KI'S%, (13)
o,=1T,€, (7)
i ) A that is the same solution we get from E§OY when the it-
where we have introduced the<m matrix (T,) jx==55~ erationi 4+ 1 is performed withh; = 0. This means that in

that Cag(xb)? seen as theth matrix of the SEQUENCE  \vell-conditioned retrievals that reach exact convergence, the

(T) =, % for i=0,1,---r. Then the VCMS, is given  VCM and AKM calculated with Egs.g), (10) and (1) co-

by: incide with those that would be obtained assuming= 0
T\_t T\ _T 517 . at the last iteration. When the retrieval is ill-posed, matrix

S’_<U’G’>_ ’<“ > r=TrS T, ® (Kl.TSSleiJrR) is singular and cannot be inverted. This

The matriced’; can be obtained by calculating the deriva- means that Eql@) does not determine uniquely 41, but a
tive of Eq. (4) with respect tg. Neglecting the derivatives whole class of matrice$; 4 fulfills this equation. Among
of K; with respect tax; (a hypothesis already exploited by all the possible solutions, EqL@) determines a solution that
the GN approach itself), and consequently with respegt to depends on the path followed by the minimization procedure
we get: in the parameter space. A similar consideration applies toill-

" : O whi e T a1y
Tip1=Ti+G: (1 —K;T;)—M;RT;. ) conditioned retngyals in which matn((Ki S Ki +R> has
_ o o a too large condition number (see Sect. 2.6Pofss et a/.
Rearranging Eq.9) and considering that the initial guess 1992, and its inversion implies an amplification of measure-
xo does not depend on the observatignsve obtain the fol-  ment errors that is so large that one or more components of

lowing recursive formula for the matricds: retrieval vector are unknowable. This means that, at machine

To=0 precision, many solutions become compatible with the same

{ Ti1=Gi+(1—G;K;—M;R)T; (10)  minimum of the cost function and the uniqueness of the so-
1 - 1 l 1 l I

lution is lost. Therefore, in ill-posed and ill-conditioned re-
Equation 0) fori=0,1,---,r—1 determined ,. This matrix  trievals the LM method acts as an external constraint select-
is then used in Eq8] to provide the VCMS, of the solution  ing one solution among all the possible ones. Consequently,
Xr. as any other external constraint, the LM method affects the
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80 . . . . . . . . Our retrieval algorithm is based on the code developed by
the European Space Agency for the operational MIPAS re-
trievals Ridolfi et al, 200Q Raspollini et al. 2006. It per-
60 | g forms a non-linear least-squares fit of the observations in se-
lected spectral intervalD@dhia et al. 2002 to retrieve at

70 - E

§ 0 ) the tangent point grid, pressure and temperature, and then
3 40t g sequentially, the VMR of water vapour, ozone, nitric acid,
é 20 methane, nitrous oxide and nitrogen dioxide in the altitude
< - i

range from 6 to 70km. As additional fitting parameters in
20 - . each retrieval, the state vector includes also components rep-
resenting atmospheric continuum absorption cross-sections

10 T as a function of altitude and of the selected spectral intervals.
0 ~ - - L - - - - Our tests focus on the retrieval of the ozone VMR pro-
0 2 4 6 8 file. The simulated observations are generated assuming a
Ozone VMR [ppmv] mid-latitude climatological atmosphere in JuRgmedios et

al., 2007). The corresponding ozone profile is reported in
Fig. 1. Ozone profile (ppmv) used to generate the simulated obserFig_ 1. We minimize the chi-square function (first term of
vations. It corresponds to a mid-latitude climatological atmospherequz) with the LM iterative technique (Eq. 4). External con-
in July (Remedios et a12007). . - . . . .

straints such as regularization or optimal estimation are dis-

abled R=0). The damping factak; is calculated as follows.

solution, the VCM and the AKM. We note that this latter con- The initial value is_equal tq 0.1. At each iteration, if the cor-
clusion applies also to retrievals in which the iterations are'®Cte€d VMRS provide a chi-square smaller than the previous

stopped before achievement of the numerical convergence %ne, the damping factor for the next iteration is reduced by a
machine precision, using a physically meaningful rule (see 2ctorr:)f4. Ift.he correc;[]ed. VMRS p_rowde acg-sqﬁarg Iarggr
Sect. 5.6.3 oRodgers2000). than the previous one the iteration is repeated with a damping

factor increased by a factor of 8. In order to make sure that
convergence is reached with good accuracy, the iterations are

3 Calculation of the VCM and AKM in a test case stopped when one of the two following conservative criteria
_ is fulfilled: (1) the relative variation of chi-square is less than
3.1 Set-up of test retrievals 0.001; (Il) the number of 10 iterations is reached. Of course

) ] conservative stopping criteria are necessary but not sufficient
We test the method proposed in Se2ton the basis of 5 ensure the good accuracy of the achieved minimum. For
ozone volume mixing ratio (VMR) vertical profile retrieval {pig reason, as we will explain in Se&2, we also verified

from synthetic limb measurements. In particular, for the 5_yosteriori the accuracy of the convergence by testing the
simulation of the measurements we consider the specificagpiained chi-square values.

tions qf MIPAS_(MicheIson Interferometer for_ Pass_ive AtMmo-  Agan example in Table 1 we report the reduced chi-square
spheric S_ou.ndlng)._MI_PAS measures the middle-infrared alychi-square divided by:—n) and the damping parameter at
mospheric limb emission spectrum from the polar Europeansach of the iterations required for the minimization. Rows
satellite ENVISAT (ENVIronmental SATellite). Full details ¢ the table with the same iteration number correspond to the
of the instrument are describedfilscher et al(2008. The  f5.¢ that the step performed with the input damping factor
simulated observations used here correspond to the MIPAgoquces an increase of the chi-square and that the iteration

nominal measurement mode adopted from January 2005 05 repeated with an increased damping factor until a decrease
ward, for which the maximum optical path difference is 8 cm. s chi-square is achieved.

The limb scans include views with tangent altitudes rang- | order to check whether it is possible to finish the re-
ing from 6 to 70km with 1.5km steps in the upper tropo- yieval with a GN iteration, we also tried to repeat iteration
sphere — lower stratosphere region and coarser steps (from £y \ith an LM damping factor equal to zero instead of 0.8.

to 4.5km) aboveRudhia 2008. _ . ~ We found that such a GN iteration provides a reduced chi-
We obtain the synthetic observations by adding Gaussiarqyare value equal to 9.04, i.e. much larger than the value
random noise to the forward model simulations. The stan-u¢ ~. 1 05 achieved with LM. This large increase is due to

dard deviation of the noise is taken equal to the noise equivine fact that some components of the state vector (represent-
alent spectral radiance of the real MIPAS measured spectrgng continuum cross-sections) are not well-determined by the
The forward model used is the one internal to our retrievalypservations and make the retrieval ill-conditioned. This ill-

program, hence permitting us to avoid systematic errors thatongitioning amplifies the numerical errors occurring in ma-
are not considered in this work. trix inversion, the small errors in the Jacobkn(due to code
optimizations), and the measurement noise errors, to a level
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that prevents the GN metho.d fro.m_ cqnverglng. .Therefore,-rame 1. Details of the iterations required for the minimization of
the presented test case requires finishing the retrieval with age cost function (chi-square) in our test retrieval. Rows of the table

LM damping factor different from zero, and, as described inyjith the same iteration number correspond to the fact that the step
Sect.2, the solution, and its VCM and AKM, depend on the performed with the input damping factor produces an increase of

path followed by the minimization procedure in the parame-chi-square and that the iteration is repeated with increased damping

ter space. factor until a decrease of chi-square is obtained.
3.2 Calculation of the VCM Iteration Damping factor ~ Reduced
chi-square

We calculated the VCM of the obtained solution using four

different approaches. The first calculation is done as sug- 0 34.0310
gested irPress et al1992 and is obtained from the LM for- 1 0.1 1.2466
mula of the last iteration step with damping factor equal to g 0 86%2255 11'3%%27
zero (as if the last iteration was a GN iteration). This method 3 ' 0.05 1.'0859
provides the following formula for the VCM (we remind the 4 0.0125 1.1233
reader that in our algorithm we u&e=0): 4 0.1 1.0757
_1 5 0.025 1.0972
S§1>=(K,T_1Sy—lK,,1) . (14) 5 02  1.0666
6 0.05 1.0793

The second calculation is done as suggestétEiccherini 6 0.4 1.0590
et al.(2007) and is obtained from the LM formula of the last 7 0.1 1.0665
iteration, with the actual value of the damping factor. This 7 0.8 1.0535
method provides the following formula for the VCM: 8 0.2 1.0577
L 8 1.6 1.0501

§2= (KL 18,1+ 1D,1) ; 04 Lo
10 0.8 1.0480

-1
K,T,15571Kr—1(K,T,1$571Kr—1+)»r—1Dr—1) . (15)

The third calculation provides the VC®3) proposed in
Sect.2 and is obtained from Eqs8)and (L0).

The fourth calculation consists in the a-posteriori calcula- ¢ expected value of 1 (we are using simulated observa-
tion of the VCM on the basis of its statistical estimaBe(-  {jons, therefore the forward model errors do not affect the

ington and Robinsqr2003 applied to the profiles resulting  cpi_square value). If we attribute this difference to the con-
from a statistically significant set of simulated retrievals. We vergence error, then the squared ratio between the conver-
carried out 1000 retrievals from 1000 sets of synthetic meayence error and the retrieval error due to measurement noise

surements generated assuming the same atmospheric Sta&) 02, Therefore the convergence error is at least a factor of

and measurement conditions, but with different seeds in thé, smajjer than the retrieval error due to measurement noise.
algorithm generating the random noise added to the forward

model simulations. Then we estimated the VCM as: In Figs. 24 we compare the four calculated VCMs. In
4 — Fig. 2 we report the square roots of the diagonal elements of
S =(x,—¥,) (x,—%7) (16)  the VCMs: they represent the errors on the retrieved VMRs

. . at the different altitudes. The lines in red, black and blue are
where the over-bar denotes the arithmetic average of the ret-he average on the 1000 retrievals of the are roots of the
sults of the 1000 retrievals. We consider this estimate of the verag retrievals square roots

; (1) <2 (3) ;
VCM to be very accurate as it is based on a statistically sig-diagonal elements d&"', S andS”, respectively. The

nificant set of simulated retrievals and its evaluation does nofr2y areas around the lines represent the standard deviations

involve shortcuts or approximations. of the plotted quantities. The gray area around the red line is
Although the convergence criteria used are very conservalot visible due to the extremely small fluctuationss¥ in

tive, it could be argued that an occasionally large LM damp-the test retrievals. The green line reports the square roots of

ing factor could produce a small chi-square variation far fromthe diagonal elements &®. The comparison of the errors

convergence, and erroneously trigger a successful conveestimated by the three analytical methods to the errors eval-

gence check. In order to verify that this condition does notuated a-posteriori with the statistical estimator of ELf)(

occur in our retrievals we checked a-posteriori the accuracyshows thalSSl) overestimates the errors below 30 kBﬁ,z)

of the obtained minimum. For this purpose we calculatedunderestimates the errors in the whole altitude rangéséfﬁd

the average of the final reduced chi-square values obtainegdrovides a good estimation of the errors in the whole altitude

in the 1000 retrievals. We got 1.02, to be compared withrange.

www.atmos-chem-phys.net/10/3131/2010/ Atmos. Chem. Phys., 10, 31332010
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80 — . ; . ; . ; . ; indicates a 2% overestimation of the error giveré):?/. This
70 marginal overestimation is consistent with the plot of Fig. 2.
[0
60 L S'-m i 3.3 Calculation of the AKM
—s
g 50 + SEI . According to the scheme adopted for the calculation of the
@ 40 S, VCM we calculated the AKM of the solution obtained using
e r T . . . . . .
2 four different calculations. The first calculation is obtained
< 30} - from the LM formula of the last iteration step with LM damp-
20| ] ing factor equal to zero. This method provides the identity
matrix as AKM:
10 | i
AL = (18)
0 1 1 1 1 1 ) i ) L.
0.00 0.05 0.10 0.15 0.20 The second calculation is done as suggestéteiecherini
Error [ppmv] et al. (2007) and is obtained from the LM formula of the

last iteration step with the actual value of the damping factor.
Fig. 2. Average values (ppmv) of the square roots of the diagonal el-This method provides the following formula:

ements 0551) (red),Sﬁz) (black) andS£3) (blue) on 1000 simulated @ T w1 -1 4
retrievals. The gray areas around the lines represent the standafy :<Kr—1sy Kr—1+)‘r—1Dr—1) Kr—lsy Kr-1 (19)
deviations. The gray area around the red line is not visible due to

. . . A3 .
the extremely small fluctuations &Y in the test retrievals. The The th'rd_ Ca|CU|fit'0n provides the AKM, ) proposed in
green curve represents the square roots of the diagonal elements §€ct.2 and is obtained from Eqsl1Q) and (1).

s see text for definitions B2, 52, s ands?. The fourth calculation provides the AKM'? estimated

with the numerical calculation of the derivatives appearing
in the definition of AKM contained in Eq.1{1). The proce-
Figure 3 shows the correlations extracted from the four dure for this calculation is as follows. We perturb a level of
calculated VCMs. Figurd reports the differences between the “true” ozone VMR profile and calculate with the forward
the correlations extracted frogf?, S?, S and those ex- Model the observations corresponding to the perturbed pro-
tracted fronS® . While the correlations calculated frog file. We perform the retrieval from these observations and
andS? significantly deviate from the correlations calculated calculate the difference between the retrieved profile and the
from Sf"’), the correlations calculated fr08$3) and 854) are profile retrieved from synthetic qbservanons assuming an un-
in very good agreement. pertgrbed atmosph_ere. Thg ratio betwegn this difference and
The results reported in Figg— show that, globally, the thg)lnput perturbation prowdes_the entries of the co!umn of
VCM calculated with the method proposed in S@:(Sﬁg)) A;" that corresponds to the altitude of the perturbation. By

. . . applying sequentially the perturbation to all the levels of the
agrees very well with the VCM estimated a—posterlﬁiﬁ)(), pplying sequentially perturbat v

“ ” - 4) i
whereas the VCMs calculated with the approximated meth- true” profile, we calculate the whola, ™. After several tri

. A . als we selected a perturbation amplitude of 0.01 ppmv (parts
ods proposed ifress et al1992 (&) andCeccherini et al. per million by volume). This value turns out to be small

D)\ i igs . .
(2007 (S significantly deviate from it. _ enough for a good approximation of the incremental limit of
As a further test to show that the retrieval error is properly the derivatives and, at the same time, large enough to avoid
I’epl’esented by the ch(a), for each of the 1000 retrievals numerical rounding errors. We Consid@yl) the most ac-

described earlier we calculated the quantitgtefined as: curate estimate of the AKM and, therefore, we assume this
matrix to be the reference AKM of our retrieval. )
_1 . . .
o [(Xr VY (S§3)) (Xr_xtrue)]/”l 17) Figure5 ?gows the averag(lgg kernels in the rgvysﬁéf’
(panel @) A;~ (panel b) andA;” (panel ¢). The trivial case

. . . Aﬁl)zl is not shown. In Fig6 we report the differences be-
wherex, andXye are respectively the retrieved profile and ween the averaging kernels in the rowsA® (panel a)

the true profile assumed for the generation of the simulateé @ (% 9 ) b 8
observations. Then we calculated the averagever the - (Panel b).A;” (panel c) and those in the rows Af?.

1000 retrievals of the quantity. By definition, ifS\ repre- ~ 1hiS comparison shows that the averaging .ker.r!elg\ﬁ&? _
sents a correct estimate of the retrieval error, i. &3 esti- corresponding to EQ)e altitudes below 30km mgmﬂg;antly dif-
mates properly the retrieval error due to measurement noisf" from those o, ™. All the A dng kernels gk, sig-
and if this is the dominant error component affecting the re_nlflcantly3d|ffer from those ofA;”. All the averaging ker-
trieved profiles, then we expegt= 1. We gotw =0.96. This  nels of ALY (calculated with the method proposed in Séjt.
value confirms that the convergence error is negligible andagree well with those 04\54).
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In summary, we see that both the VCM and the AKM esti-  The implementation of the proposed method requires the

mated with the method proposed in this paper agree well withevaluation ofT; at each iteration with Eq10) and its storage

the VCM and AKM calculated using the statistical estimator up to the subsequent iteration for the calculatioi of;. At

and the numerical derivatives, respectively. Whereas, the twohe end of the iterations the matrix products in E@.and

methods reported in the literature significantly deviate from(11) need also to be evaluated. In the test case we examined,

the accurate a-posteriori estimates. the additional computing resources required for these opera-
tions are not relevant when compared to the overall amount
of resources necessary for the retrieval.
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