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Abstract. The variance-covariance matrix (VCM) and the
averaging kernel matrix (AKM) are widely used tools to
characterize atmospheric vertical profiles retrieved from re-
mote sensing measurements. Accurate estimation of these
quantities is essential for both the evaluation of the qual-
ity of the retrieved profiles and for the correct use of the
profiles themselves in subsequent applications such as data
comparison, data assimilation and data fusion. We propose a
new method to estimate the VCM and AKM of vertical pro-
files retrieved using the Levenberg-Marquardt iterative tech-
nique. We apply the new method to the inversion of sim-
ulated limb emission measurements. Then we compare the
obtained VCM and AKM with those resulting from other
methods already published in the literature and with accurate
estimates derived using statistical and numerical estimators.
The proposed method accounts for all the iterations done
in the inversion and provides the most accurate VCM and
AKM. Furthermore, it correctly estimates the VCM and the
AKM also if the retrieval iterations are stopped when a phys-
ically meaningful convergence criterion is fulfilled, i.e. be-
fore achievement of the numerical convergence at machine
precision. The method can be easily implemented in any
Levenberg-Marquardt iterative retrieval scheme, either con-
strained or unconstrained, without significant computational
overhead.

Correspondence to:S. Ceccherini
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1 Introduction

The retrieval of the vertical distribution of an atmospheric pa-
rameter from remote sensing measurements is generally per-
formed by fitting forward model simulations to the available
observations (Rodgers, 2000; Twomey, 1977). The fitting
procedure consists in the minimization of a cost function,
generally made of the summation of two terms. The first
term, usually called “chi-square”, is the squared weighted
norm of the residuals, i.e. the square of the norm of the dif-
ferences between observations and simulations, the weight
being provided by the inverse variance-covariance matrix
(VCM) of the observations. The second term of the cost
function, if any, is usually a constraint to the solution. This
term can be used for example to penalize solutions that ei-
ther oscillate beyond acceptable limits (Bowman et al., 2006;
Ceccherini, 2005; Doicu et al., 2004; Ridolfi and Sgheri,
2009; Schimpf and Schreier, 1997; Sofieva et al., 2004) or
deviate from an a-priori (Rodgers, 2000). Since the forward
model is usually a non-linear function of the atmospheric
state vector, an iterative method is needed to find the min-
imum of the cost function. In case of weak non-linearity of
the forward model, the Gauss-Newton (GN) technique can
be successfully applied (Press et al., 1992). On the other
hand, if the forward model is significantly non-linear, a GN
step can lead to an increase rather than to a decrease of the
cost function. This situation, often occurring in the retrieval
of vertical profiles of atmospheric parameters, is generally
overcome by applying the Levenberg-Marquardt (LM) modi-
fication (Levenberg, 1944; Marquardt, 1963). This modifica-
tion combines the steepest descent (Press et al., 1992) and the
GN methods by damping the GN iteration step. A damping
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factor is adjusted at each iteration in such a way that if the
step leads to a reduction of the cost-function the damping
factor is decreased, making the next step closer to the GN
step. Whereas, if the step leads to an increase of the cost
function the iteration is repeated with an increased damping
factor, producing a step closer to the gradient descent direc-
tion.

In principle, if a minimum of the cost function has been
approached close enough it should be possible to reduce the
LM damping factor to a negligibly small value and reach
the convergence with a final GN step. This is possible in
well-conditioned retrievals but not in both ill-posed and ill-
conditioned retrievals. In ill-posed retrievals the minimum of
the cost function does not correspond to an unique solution
but to a whole class of solutions. In this case it is not possi-
ble to perform a final GN step because this involves the in-
version of a singular matrix. In ill-conditioned retrievals the
matrix to be inverted is not singular but its condition num-
ber is too large (Press et al., 1992) and the inversion greatly
amplifies numerical, approximation and measurement errors.
This large error amplification prevents the GN step from find-
ing the minimum of the cost function. Therefore, in ill-posed
and ill-conditioned retrievals it is not possible to finish the
iterative procedure with a negligible LM damping factor and
the question arises on how to characterize properly the LM
solution.

The VCM and the averaging kernel matrix (AKM) are
widely used tools to characterize the solution of the retrieval.
Accurate estimation of these quantities is essential for both
the evaluation of the quality of the retrieved profiles and
for their correct use in subsequent applications such as data
comparison (Ceccherini et all, 2003; Cortesi et al., 2007;
Pougatchev, 2008; Ridolfi et al., 2007; Rodgers and Connor,
2003), data assimilation (Lahoz et al., 2007) and data fusion
(Ceccherini et al., 2009, 2010). While the calculation of the
VCM and of the AKM is relatively easy in the GN case (see
e.g.Rodgers, 2000), in the LM case one must be more cau-
tious.

So far two different methods have been used for the cal-
culation of the VCM and AKM of the LM iterative solution.
The first one (Press et al., 1992) calculates these quantities
assuming a negligibly small LM damping in the formula used
to update the state vector at the last iteration. Of course this
method involves an approximation that, as we will show in
the following sections, might also be relatively coarse. The
second method (Ceccherini et al., 2007) calculates the VCM
and the AKM from the formula of the last iteration step, with-
out neglecting the LM damping term. This method is cor-
rect if the minimum is reached in only one iteration, while
it may also involve a relatively coarse approximation if sev-
eral iterations are required for the minimization. In this paper
we introduce an alternative method for the calculation of the
VCM and AKM of the LM solution. The proposed method
accounts for both the LM damping term and all the iterations
required for the minimization of the cost function.

In this paper the methods ofPress et al.(1992) and of
Ceccherini et al.(2007) and the new proposed one are ap-
plied to the retrieval of the ozone vertical profile from mid-
infrared limb emission simulated measurements. These three
results are compared to those obtained using, in the case of
the VCM, the statistical estimator applied to a set of simu-
lated retrievals and, in the case of AKM, the numerical cal-
culation of the derivatives.

The paper is organized as follows. In Sect.2 we describe
the theory of the new proposed method. In Sect.3 we apply
the new method and the other two methods available from
the literature to simulated measurements and compare the
resulting VCMs and AKMs to those derived using the sta-
tistical estimator and the numerical derivatives, respectively.
In Sect.4 we draw the conclusions of the work.

2 Theory

Consistent with the notations adopted byRodgers(2000),
we represent the observations by them-dimensional vector
y and the unknown atmospheric state by then-dimensional
vectorx. The forward modelf (x) provides simulated ob-
servations given the atmospheric statex. The relationship
betweenx andy is

y=f (x)+ε, (1)

whereε is them-dimensional vector containing the experi-
mental errors of the observations, characterized by a VCM
Sy=

〈
εεT

〉
, where the symbol〈···〉 denotes the expectation

value. The solution of the inverse problem is the statex min-
imizing a cost function usually defined as:

ξ2
=(y−f (x))T S−1

y (y−f (x))+(xa−x)T R(xa−x), (2)

whereR is an×n matrix operator that may be used to con-
strain the solution towards the shape (using e.g. the first
and/or the second vertical derivatives, seeRidolfi and Sgheri,
2009) and/or the value of an a-priori estimatexa.

Sincef (x) is a non-linear and complicated function ofx,
an analytical solution for the minimum ofξ2 does not exist.
Therefore an iterative method is often used to find the mini-
mum. The iterations are stopped when a pre-defined conver-
gence criterion is fulfilled and the final state vectorxr at the
last iteration (indexr) represents the solution of the retrieval.

If the forward model is moderately non-linear, the GN
method can be used for the minimization ofξ2, with the fol-
lowing iterative formula:

xi+1 = xi+

(
KT

i S−1
y K i+R

)−1
·[

KT
i S−1

y (y−f (xi))+R(xa−xi)
]
, (3)

whereK i is the Jacobian matrix of the forward model calcu-
lated atx=xi .

Atmos. Chem. Phys., 10, 3131–3139, 2010 www.atmos-chem-phys.net/10/3131/2010/



S. Ceccherini and M. Ridolfi: Covariance matrix for Levenberg-Marquardt solution 3133

If the forward model is significantly non-linear, the step in
Eq. (3) can lead to an increase rather than to a decrease of
the cost functionξ2. In this case it is useful to adopt the LM
modification that is based on the following iteration step:

xi+1 = xi+

(
KT

i S−1
y K i+R+λiDi

)−1
·[

KT
i S−1

y (y−f (xi))+R(xa−xi)
]

(4)

= xi+Gi (y−f (xi))+M iR(xa−xi),

where we have defined:

M i=

(
KT

i S−1
y K i+R+λiDi

)−1
(5)

Gi=M iKT
i S−1

y , (6)

whereDi is a diagonal matrix with the diagonal elements
equal to the diagonal elements ofKT

i S−1
y K i (see e.g.Pujol,

2007) andλi is a scalar damping factor that depends on the
iteration indexi. The iterations start with a small damping
factorλ0. At each iteration, if the corrected statexi+1 pro-
vides a reduction of the cost function (i.e.ξ2(xi+1)<ξ2(xi))
then the statexi+1 is accepted and the damping factor for
the next iteration is reduced. If the statexi+1 provides an
increase of the cost function (ξ2(xi+1)>ξ2(xi)) thenxi+1 is
rejected and the iteration is repeated with a larger damping
factor.

In order to find the VCMSr of the solutionxr we have to
propagate the errorε from y ontoxr . The error vectorσ r on
xr can be written as:

σ r=Trε, (7)

where we have introduced then×m matrix (Tr)jk=
∂(xr )j
∂yk

that can be seen as ther-th matrix of the sequence

(Ti)jk=
∂(xi )j
∂yk

for i=0,1,···r. Then the VCMSr is given
by:

Sr=

〈
σ rσ

T
r

〉
=Tr

〈
εεT

〉
TT

r =TrSyTT
r . (8)

The matricesTi can be obtained by calculating the deriva-
tive of Eq. (4) with respect toy. Neglecting the derivatives
of K i with respect toxi (a hypothesis already exploited by
the GN approach itself), and consequently with respect toy,
we get:

Ti+1=Ti+Gi (I−K iTi)−M iRTi . (9)

Rearranging Eq. (9) and considering that the initial guess
x0 does not depend on the observationsy, we obtain the fol-
lowing recursive formula for the matricesTi :{

T0=0
Ti+1=Gi+(I−GiK i−M iR)Ti .

(10)

Equation (10) for i=0,1,···,r−1 determinesTr . This matrix
is then used in Eq. (8) to provide the VCMSr of the solution
xr .

The elements ofAr , the AKM of xr , are defined as the
derivatives of the components of the solutionxr with respect
to the components of the true profilex. Sincexr is a function
of the observationsy that in turn are functions of the true
profilex, we can write:

Ar=
∂xr

∂x
=

∂xr

∂y

∂y

∂x
=TrK , (11)

whereK is the Jacobian matrix of the forward model calcu-
lated in the true profilex. Equations (8) and (11) show that
both the VCM and the AKM depend onTr which in turn,
as shown by Eq. (10), depends on the path in the parame-
ter space followed by the minimization procedure, from the
initial guess to the solution. We note however that, if an it-
eration step is done withλi=0 (GN iteration) from Eqs. (5)
and (6) we getGiK i+M iR=I and from Eq. (10) it follows
thatTr is independent of the steps performed before the con-
sidered iteration. Therefore, we can say that a GN iteration
resets the memory of the path followed before that iteration.

When exact convergence is reached we getxi+1 = xi and
consequently alsoTi+1 = Ti (from the definition ofTi).
Substituting this condition in Eq. (10) and using Eqs. (5) and
(6) we get:

KT
i S−1

y =

(
KT

i S−1
y K i +R

)
Ti+1. (12)

In well-conditioned retrievals the matrix
(
KT

i S−1
y K i +R

)
can be inverted and we get the solution:

Ti+1 =

(
KT

i S−1
y K i +R

)−1
KT

i S−1
y , (13)

that is the same solution we get from Eq. (10) when the it-
erationi +1 is performed withλi = 0. This means that in
well-conditioned retrievals that reach exact convergence, the
VCM and AKM calculated with Eqs. (8), (10) and (11) co-
incide with those that would be obtained assumingλi = 0
at the last iteration. When the retrieval is ill-posed, matrix(
KT

i S−1
y K i +R

)
is singular and cannot be inverted. This

means that Eq. (12) does not determine uniquelyTi+1, but a
whole class of matricesTi+1 fulfills this equation. Among
all the possible solutions, Eq. (10) determines a solution that
depends on the path followed by the minimization procedure
in the parameter space. A similar consideration applies to ill-

conditioned retrievals in which matrix
(
KT

i S−1
y K i +R

)
has

a too large condition number (see Sect. 2.6 ofPress et al.,
1992), and its inversion implies an amplification of measure-
ment errors that is so large that one or more components of
retrieval vector are unknowable. This means that, at machine
precision, many solutions become compatible with the same
minimum of the cost function and the uniqueness of the so-
lution is lost. Therefore, in ill-posed and ill-conditioned re-
trievals the LM method acts as an external constraint select-
ing one solution among all the possible ones. Consequently,
as any other external constraint, the LM method affects the
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Fig. 1. Ozone profile (ppmv) used to generate the simulated obser-
vations. It corresponds to a mid-latitude climatological atmosphere
in July (Remedios et al., 2007).

solution, the VCM and the AKM. We note that this latter con-
clusion applies also to retrievals in which the iterations are
stopped before achievement of the numerical convergence at
machine precision, using a physically meaningful rule (see
Sect. 5.6.3 ofRodgers, 2000).

3 Calculation of the VCM and AKM in a test case

3.1 Set-up of test retrievals

We test the method proposed in Sect.2 on the basis of
ozone volume mixing ratio (VMR) vertical profile retrieval
from synthetic limb measurements. In particular, for the
simulation of the measurements we consider the specifica-
tions of MIPAS (Michelson Interferometer for Passive Atmo-
spheric Sounding). MIPAS measures the middle-infrared at-
mospheric limb emission spectrum from the polar European
satellite ENVISAT (ENVIronmental SATellite). Full details
of the instrument are described inFischer et al.(2008). The
simulated observations used here correspond to the MIPAS
nominal measurement mode adopted from January 2005 on-
ward, for which the maximum optical path difference is 8 cm.
The limb scans include views with tangent altitudes rang-
ing from 6 to 70 km with 1.5 km steps in the upper tropo-
sphere – lower stratosphere region and coarser steps (from 2
to 4.5 km) above (Dudhia, 2008).

We obtain the synthetic observations by adding Gaussian
random noise to the forward model simulations. The stan-
dard deviation of the noise is taken equal to the noise equiv-
alent spectral radiance of the real MIPAS measured spectra.
The forward model used is the one internal to our retrieval
program, hence permitting us to avoid systematic errors that
are not considered in this work.

Our retrieval algorithm is based on the code developed by
the European Space Agency for the operational MIPAS re-
trievals (Ridolfi et al., 2000; Raspollini et al., 2006). It per-
forms a non-linear least-squares fit of the observations in se-
lected spectral intervals (Dudhia et al., 2002) to retrieve at
the tangent point grid, pressure and temperature, and then
sequentially, the VMR of water vapour, ozone, nitric acid,
methane, nitrous oxide and nitrogen dioxide in the altitude
range from 6 to 70 km. As additional fitting parameters in
each retrieval, the state vector includes also components rep-
resenting atmospheric continuum absorption cross-sections
as a function of altitude and of the selected spectral intervals.

Our tests focus on the retrieval of the ozone VMR pro-
file. The simulated observations are generated assuming a
mid-latitude climatological atmosphere in July (Remedios et
al., 2007). The corresponding ozone profile is reported in
Fig. 1. We minimize the chi-square function (first term of
Eq.2) with the LM iterative technique (Eq. 4). External con-
straints such as regularization or optimal estimation are dis-
abled (R=0). The damping factorλi is calculated as follows.
The initial value is equal to 0.1. At each iteration, if the cor-
rected VMRs provide a chi-square smaller than the previous
one, the damping factor for the next iteration is reduced by a
factor of 4. If the corrected VMRs provide a chi-square larger
than the previous one the iteration is repeated with a damping
factor increased by a factor of 8. In order to make sure that
convergence is reached with good accuracy, the iterations are
stopped when one of the two following conservative criteria
is fulfilled: (I) the relative variation of chi-square is less than
0.001; (II) the number of 10 iterations is reached. Of course
conservative stopping criteria are necessary but not sufficient
to ensure the good accuracy of the achieved minimum. For
this reason, as we will explain in Sect.3.2, we also verified
a-posteriori the accuracy of the convergence by testing the
obtained chi-square values.

As an example in Table 1 we report the reduced chi-square
(chi-square divided bym−n) and the damping parameter at
each of the iterations required for the minimization. Rows
of the table with the same iteration number correspond to the
fact that the step performed with the input damping factor
produces an increase of the chi-square and that the iteration
is repeated with an increased damping factor until a decrease
of chi-square is achieved.

In order to check whether it is possible to finish the re-
trieval with a GN iteration, we also tried to repeat iteration
10 with an LM damping factor equal to zero instead of 0.8.
We found that such a GN iteration provides a reduced chi-
square value equal to 9.04, i.e. much larger than the value
of ≈ 1.05 achieved with LM. This large increase is due to
the fact that some components of the state vector (represent-
ing continuum cross-sections) are not well-determined by the
observations and make the retrieval ill-conditioned. This ill-
conditioning amplifies the numerical errors occurring in ma-
trix inversion, the small errors in the JacobianK i (due to code
optimizations), and the measurement noise errors, to a level
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that prevents the GN method from converging. Therefore,
the presented test case requires finishing the retrieval with an
LM damping factor different from zero, and, as described in
Sect.2, the solution, and its VCM and AKM, depend on the
path followed by the minimization procedure in the parame-
ter space.

3.2 Calculation of the VCM

We calculated the VCM of the obtained solution using four
different approaches. The first calculation is done as sug-
gested inPress et al.(1992) and is obtained from the LM for-
mula of the last iteration step with damping factor equal to
zero (as if the last iteration was a GN iteration). This method
provides the following formula for the VCM (we remind the
reader that in our algorithm we useR=0):

S(1)
r =

(
KT

r−1S−1
y K r−1

)−1
. (14)

The second calculation is done as suggested inCeccherini
et al.(2007) and is obtained from the LM formula of the last
iteration, with the actual value of the damping factor. This
method provides the following formula for the VCM:

S(2)
r =

(
KT

r−1S−1
y K r−1+λr−1Dr−1

)−1

KT
r−1S−1

y K r−1

(
KT

r−1S−1
y K r−1+λr−1Dr−1

)−1
. (15)

The third calculation provides the VCMS(3)
r proposed in

Sect.2 and is obtained from Eqs. (8) and (10).
The fourth calculation consists in the a-posteriori calcula-

tion of the VCM on the basis of its statistical estimator (Bev-
ington and Robinson, 2003) applied to the profiles resulting
from a statistically significant set of simulated retrievals. We
carried out 1000 retrievals from 1000 sets of synthetic mea-
surements generated assuming the same atmospheric state
and measurement conditions, but with different seeds in the
algorithm generating the random noise added to the forward
model simulations. Then we estimated the VCM as:

S(4)
r =(xr−xr)(xr−xr)

T (16)

where the over-bar denotes the arithmetic average of the re-
sults of the 1000 retrievals. We consider this estimate of the
VCM to be very accurate as it is based on a statistically sig-
nificant set of simulated retrievals and its evaluation does not
involve shortcuts or approximations.

Although the convergence criteria used are very conserva-
tive, it could be argued that an occasionally large LM damp-
ing factor could produce a small chi-square variation far from
convergence, and erroneously trigger a successful conver-
gence check. In order to verify that this condition does not
occur in our retrievals we checked a-posteriori the accuracy
of the obtained minimum. For this purpose we calculated
the average of the final reduced chi-square values obtained
in the 1000 retrievals. We got 1.02, to be compared with

Table 1. Details of the iterations required for the minimization of
the cost function (chi-square) in our test retrieval. Rows of the table
with the same iteration number correspond to the fact that the step
performed with the input damping factor produces an increase of
chi-square and that the iteration is repeated with increased damping
factor until a decrease of chi-square is obtained.

Iteration Damping factor Reduced
chi-square

0 34.0310
1 0.1 1.2466
2 0.025 1.0862
3 0.00625 1.1607
3 0.05 1.0859
4 0.0125 1.1233
4 0.1 1.0757
5 0.025 1.0972
5 0.2 1.0666
6 0.05 1.0793
6 0.4 1.0590
7 0.1 1.0665
7 0.8 1.0535
8 0.2 1.0577
8 1.6 1.0501
9 0.4 1.0520
9 3.2 1.0481
10 0.8 1.0480

the expected value of 1 (we are using simulated observa-
tions, therefore the forward model errors do not affect the
chi-square value). If we attribute this difference to the con-
vergence error, then the squared ratio between the conver-
gence error and the retrieval error due to measurement noise
is 0.02. Therefore the convergence error is at least a factor of
7 smaller than the retrieval error due to measurement noise.

In Figs. 2–4 we compare the four calculated VCMs. In
Fig. 2 we report the square roots of the diagonal elements of
the VCMs: they represent the errors on the retrieved VMRs
at the different altitudes. The lines in red, black and blue are
the average on the 1000 retrievals of the square roots of the
diagonal elements ofS(1)

r , S(2)
r andS(3)

r , respectively. The
gray areas around the lines represent the standard deviations
of the plotted quantities. The gray area around the red line is
not visible due to the extremely small fluctuations ofS(1)

r in
the test retrievals. The green line reports the square roots of
the diagonal elements ofS(4)

r . The comparison of the errors
estimated by the three analytical methods to the errors eval-
uated a-posteriori with the statistical estimator of Eq. (16)
shows thatS(1)

r overestimates the errors below 30 km,S(2)
r

underestimates the errors in the whole altitude range andS(3)
r

provides a good estimation of the errors in the whole altitude
range.
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Fig. 2. Average values (ppmv) of the square roots of the diagonal el-

ements ofS(1)
r (red),S(2)

r (black) andS(3)
r (blue) on 1000 simulated

retrievals. The gray areas around the lines represent the standard
deviations. The gray area around the red line is not visible due to

the extremely small fluctuations ofS(1)
r in the test retrievals. The

green curve represents the square roots of the diagonal elements of

S(4)
r . See text for definitions ofS(1)

r , S(2)
r , S(3)

r andS(4)
r .

Figure 3 shows the correlations extracted from the four
calculated VCMs. Figure4 reports the differences between
the correlations extracted fromS(1)

r , S(2)
r , S(3)

r and those ex-
tracted fromS(4)

r . While the correlations calculated fromS(1)
r

andS(2)
r significantly deviate from the correlations calculated

from S(4)
r , the correlations calculated fromS(3)

r andS(4)
r are

in very good agreement.
The results reported in Figs.2–4 show that, globally, the

VCM calculated with the method proposed in Sect.2 (S(3)
r )

agrees very well with the VCM estimated a-posteriori (S(4)
r ),

whereas the VCMs calculated with the approximated meth-
ods proposed inPress et al.(1992) (S(1)

r ) andCeccherini et al.
(2007) (S(2)

r ) significantly deviate from it.
As a further test to show that the retrieval error is properly

represented by the VCMS(3)
r , for each of the 1000 retrievals

described earlier we calculated the quantityα defined as:

α =

[
(xr −xtrue)

T
(
S(3)

r

)−1
(xr −xtrue)

]
/n (17)

wherexr andxtrue are respectively the retrieved profile and
the true profile assumed for the generation of the simulated
observations. Then we calculated the averageα over the
1000 retrievals of the quantityα. By definition, ifS(3)

r repre-
sents a correct estimate of the retrieval error, i.e. ifS(3)

r esti-
mates properly the retrieval error due to measurement noise
and if this is the dominant error component affecting the re-
trieved profiles, then we expectα = 1. We gotα = 0.96. This
value confirms that the convergence error is negligible and

indicates a 2% overestimation of the error given byS(3)
r . This

marginal overestimation is consistent with the plot of Fig. 2.

3.3 Calculation of the AKM

According to the scheme adopted for the calculation of the
VCM we calculated the AKM of the solution obtained using
four different calculations. The first calculation is obtained
from the LM formula of the last iteration step with LM damp-
ing factor equal to zero. This method provides the identity
matrix as AKM:

A(1)
r =I (18)

The second calculation is done as suggested inCeccherini
et al. (2007) and is obtained from the LM formula of the
last iteration step with the actual value of the damping factor.
This method provides the following formula:

A(2)
r =

(
KT

r−1S−1
y K r−1+λr−1Dr−1

)−1
KT

r−1S−1
y K r−1 (19)

The third calculation provides the AKMA(3)
r proposed in

Sect.2 and is obtained from Eqs. (10) and (11).
The fourth calculation provides the AKMA(4)

r estimated
with the numerical calculation of the derivatives appearing
in the definition of AKM contained in Eq. (11). The proce-
dure for this calculation is as follows. We perturb a level of
the “true” ozone VMR profile and calculate with the forward
model the observations corresponding to the perturbed pro-
file. We perform the retrieval from these observations and
calculate the difference between the retrieved profile and the
profile retrieved from synthetic observations assuming an un-
perturbed atmosphere. The ratio between this difference and
the input perturbation provides the entries of the column of
A(4)

r that corresponds to the altitude of the perturbation. By
applying sequentially the perturbation to all the levels of the
“true” profile, we calculate the wholeA(4)

r . After several tri-
als we selected a perturbation amplitude of 0.01 ppmv (parts
per million by volume). This value turns out to be small
enough for a good approximation of the incremental limit of
the derivatives and, at the same time, large enough to avoid
numerical rounding errors. We considerA(4)

r the most ac-
curate estimate of the AKM and, therefore, we assume this
matrix to be the reference AKM of our retrieval.

Figure5 shows the averaging kernels in the rows ofA(2)
r

(panel a),A(3)
r (panel b) andA(4)

r (panel c). The trivial case
A(1)

r =I is not shown. In Fig.6 we report the differences be-
tween the averaging kernels in the rows ofA(1)

r (panel a),
A(2)

r (panel b),A(3)
r (panel c) and those in the rows ofA(4)

r .
This comparison shows that the averaging kernels ofA(1)

r

corresponding to the altitudes below 30 km significantly dif-
fer from those ofA(4)

r . All the averaging kernels ofA(2)
r sig-

nificantly differ from those ofA(4)
r . All the averaging ker-

nels ofA(3)
r (calculated with the method proposed in Sect.2)

agree well with those ofA(4)
r .

Atmos. Chem. Phys., 10, 3131–3139, 2010 www.atmos-chem-phys.net/10/3131/2010/



S. Ceccherini and M. Ridolfi: Covariance matrix for Levenberg-Marquardt solution 3137

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

A
lti

tu
de

 (
km

)

-1

-0.5

 0

 0.5

 1

C
or

re
la

tio
n

(b)

(c)

 0 10 20 30 40 50 60 70 80

Altitude (km)

 0

 10

 20

 30

 40

 50

 60

 70

 80

A
lti

tu
de

 (
km

)

(d)

 0 10 20 30 40 50 60 70 80

Altitude (km)

Fig. 3. Correlation matrices derived fromS(1)
r (a), S(2)

r (b), S(3)
r (c) andS(4)
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r andS(4)

r .

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

A
lti

tu
de

 (
km

)

-1 -0.5  0  0.5  1

Correlation difference

(b)

 0 10 20 30 40 50 60 70 80

Altitude (km)(c)

 0 10 20 30 40 50 60 70 80

Altitude (km)

 0

 10

 20

 30

 40

 50

 60

 70

 80

A
lti

tu
de

 (
km

)

Fig. 4. Differences between the correlations derived fromS(1)
r (a), S(2)

r (b), S(3)
r (c) and those derived fromS(4)

r . See text for definitions of

S(1)
r , S(2)

r , S(3)
r andS(4)

r .

In summary, we see that both the VCM and the AKM esti-
mated with the method proposed in this paper agree well with
the VCM and AKM calculated using the statistical estimator
and the numerical derivatives, respectively. Whereas, the two
methods reported in the literature significantly deviate from
the accurate a-posteriori estimates.

The implementation of the proposed method requires the
evaluation ofTi at each iteration with Eq. (10) and its storage
up to the subsequent iteration for the calculation ofTi+1. At
the end of the iterations the matrix products in Eqs. (8) and
(11) need also to be evaluated. In the test case we examined,
the additional computing resources required for these opera-
tions are not relevant when compared to the overall amount
of resources necessary for the retrieval.
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Fig. 5. Averaging kernels in the rows ofA(2)
r (a), A(3)

r (b) andA(4)
r

(c). See text for definitions ofA(2)
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4 Conclusions

We studied the problem of accurate evaluation of the VCM
and the AKM of vertical atmospheric distribution profiles
retrieved using the LM iterative technique. Two methods
are reported in literature providing the VCM and AKM on
the basis of some approximations. One method assumes
the last iteration as a GN iteration (Press et al., 1992), the
other accounts for the non-negligible LM damping but as-
sumes a single iteration retrieval (Ceccherini et al., 2007).
In this paper we propose a new method. The method uses
a rigorous calculation that takes into account all the itera-
tions required by the minimization procedure, from the ini-
tial guess to the solution. In well-conditioned retrievals that
reach exact convergence the VCM and AKM calculated with
the proposed method coincide with those calculated assum-
ing the last iteration as a GN iteration. In ill-conditioned
retrievals the LM method acts as an external constraint and
the solution depends on the path followed by the minimiza-
tion procedure in the parameter space. This latter conclusion
applies also to retrievals in which the iterations are stopped
when a physically meaningful convergence criterion is ful-
filled, i.e. before achievement of the numerical convergence
at machine precision. In these cases the VCM and AKM
calculated with the proposed method differ from those calcu-
lated assuming the last iteration as a GN iteration. We per-
form an ill-conditioned inversion and compare the VCMs and
the AKMs derived using the proposed method and the two
methods reported in the literature with accurate estimates de-
rived a-posteriori using the statistical estimator for the VCM
and the numerical derivatives for the AKM. The VCM and
AKM calculated with the two methods reported in the liter-
ature significantly deviate from the accurate a-posteriori es-
timates. Whereas, the new proposed method provides VCM
and AKM that are in good agreement with the a-posteriori es-
timates. The implementation of the method does not require
significant additional computing resources.
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Fig. 6. Differences between the averaging kernels in the rows of

A(1)
r (a), A(2)

r (b), A(3)
r (c) and those in the rows ofA(4)

r . See text

for definitions ofA(1)
r , A(2)

r , A(3)
r andA(4)

r .
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