38,189 research outputs found
High Resolution Ionization of Ultracold Neutral Plasmas
Collective effects, such as waves and instabilities, are integral to our
understanding of most plasma phenomena. We have been able to study these in
ultracold neutral plasmas by shaping the initial density distribution through
spatial modulation of the ionizing laser intensity. We describe a relay imaging
system for the photoionization beam that allows us to create higher resolution
features and its application to extend the observation of ion acoustic waves to
shorter wavelengths. We also describe the formation of sculpted density
profiles to create fast expansion of plasma into vacuum and streaming plasmas
Absence of Klein's paradox for massive bosons coupled by nonminimal vector interactions
A few properties of the nonminimal vector interactions in the
Duffin-Kemmer-Petiau theory are revised. In particular, it is shown that the
space component of the nonminimal vector interaction plays a peremptory role
for confining bosons whereas its time component contributes to the leakage.
Scattering in a square step potential with proper boundary conditions is used
to show that Klein's paradox does not manifest in the case of a nonminimal
vector coupling
On the contribution of nearly-critical spin and charge collective modes to the Raman spectra of high-Tc cuprates
We discuss how Raman spectra are affected by nearly-critical spin and charge
collective modes, which are coupled to charge carriers near a stripe quantum
critical point. We show that specific fingerprints of nearly-critical
collective modes can indeed be observed in Raman spectra and that the
selectivity of Raman spectroscopy in momentum space may also be exploited to
distinguish the spin and charge contribution. We apply our results to discuss
the spectra of high-Tc superconducting cuprates finding that the collective
modes should have masses with substantial temperature dependence in agreement
with their nearly critical character. Moreover spin modes should be more
diffusive than charge modes indicating that in stripes the charge is nearly
ordered, while spin modes are strongly overdamped and fluctuate with high
frequency.Comment: 5 pages, 3 figure
Emergence of Kinetic Behavior in Streaming Ultracold Neutral Plasmas
We create streaming ultracold neutral plasmas by tailoring the photoionizing
laser beam that creates the plasma. By varying the electron temperature, we
control the relative velocity of the streaming populations, and, in conjunction
with variation of the plasma density, this controls the ion collisionality of
the colliding streams. Laser-induced fluorescence is used to map the spatially
resolved density and velocity distribution function for the ions. We identify
the lack of local thermal equilibrium and distinct populations of
interpenetrating, counter-streaming ions as signatures of kinetic behavior.
Experimental data is compared with results from a one-dimensional, two-fluid
numerical simulation.Comment: 8 pages, 6 figure
Bound states of bosons and fermions in a mixed vector-scalar coupling with unequal shapes for the potentials
The Klein-Gordon and the Dirac equations with vector and scalar potentials
are investigated under a more general condition, . These intrinsically relativistic and isospectral problems
are solved in a case of squared hyperbolic potential functions and bound states
for either particles or antiparticles are found. The eigenvalues and
eigenfuntions are discussed in some detail and the effective Compton wavelength
is revealed to be an important physical quantity. It is revealed that a boson
is better localized than a fermion when they have the same mass and are
subjected to the same potentials.Comment: 3 figure
CP violation in semileptonic tau lepton decays
The leading order contribution to the direct CP asymmetry in tau^{+/-} ->
K^{+/-} pi^0 nu_{tau} decay rates is evaluated within the Standard Model. The
weak phase required for CP violation is introduced through an interesting
mechanism involving second order weak interactions, which is also responsible
for tiny violations of the Delta S= Delta Q rule in K_{l3} decays. The
calculated CP asymmetry turns out to be of order 10^{-12}, leaving a large
window for studying effects of non-standard sources of CP violation in this
observable.Comment: 5 pages, 3 figures, version published in Phys.Rev.
Phase Diagram of the Holstein-Hubbard Two-Leg Ladder
Using a functional renormalization group method, we obtain the phase diagram
of the two-leg ladder system within the Holstein-Hubbard model, which includes
both electron-electron and electron-phonon interactions. Our renormalization
group technique allows us to analyze the problem for both weak and strong
electron-phonon coupling. We show that, in contrast results from conventional
weak coupling studies, electron-phonon interactions can dominate
electron-electron interactions because of retardation effects.Comment: 4 page
- …