The Klein-Gordon and the Dirac equations with vector and scalar potentials
are investigated under a more general condition, Vv+Vs=constant. These intrinsically relativistic and isospectral problems
are solved in a case of squared hyperbolic potential functions and bound states
for either particles or antiparticles are found. The eigenvalues and
eigenfuntions are discussed in some detail and the effective Compton wavelength
is revealed to be an important physical quantity. It is revealed that a boson
is better localized than a fermion when they have the same mass and are
subjected to the same potentials.Comment: 3 figure