3,441 research outputs found

    Equivalence of Several Chern-Simons Matter Models

    Full text link
    Not only does Chern-Simons (CS) coupling characterize statistics, but also spin and scaling dimension of matter fields. We demonstrate spin transmutation in relativistic CS matter theory, and moreover show equivalence of several models. We study CS vector model in some details, which provide consistent check to the assertion of the equivalence.Comment: latex, 7page, IFT-478-UNC/NUP-A-93-15 A version within the length limit for Phys. Rev. Letts (in press

    Relativistic Coulomb Sum Rules for (e,e)(e,e^\prime)

    Full text link
    A Coulomb sum rule is derived for the response of nuclei to (e,e)(e,e^\prime) scattering with large three-momentum transfers. Unlike the nonrelativistic formulation, the relativistic Coulomb sum is restricted to spacelike four-momenta for the most direct connection with experiments; an immediate consequence is that excitations involving antinucleons, e.g., NNˉN{\bar N} pair production, are approximately eliminated from the sum rule. Relativistic recoil and Fermi motion of target nucleons are correctly incorporated. The sum rule decomposes into one- and two-body parts, with correlation information in the second. The one-body part requires information on the nucleon momentum distribution function, which is incorporated by a moment expansion method. The sum rule given through the second moment (RCSR-II) is tested in the Fermi gas model, and is shown to be sufficiently accurate for applications to data.Comment: 32 pages (LaTeX), 4 postscript figures available from the author

    On spin-1 massive particles coupled to a Chern-Simons field

    Get PDF
    We study spin one particles interacting through a Chern-Simons field. In the Born approximation, we calculate the two body scattering amplitude considering three possible ways to introduce the interaction: (a) a Proca like model minimally coupled to a Chern-Simons field, (b) the model obtained from (a) by replacing the Proca's mass by a Chern-Simons term and (c) a complex Maxwell-Chern-Simons model minimally coupled to a Chern-Simons field. In the low energy regime the results show similarities with the Aharonov-Bohm scattering for spin 1/2 particles. We discuss the one loop renormalization program for the Proca's model. In spite of the bad ultraviolet behavior of the matter field propagator, we show that, up to one loop the model is power counting renormalizable thanks to the Ward identities satisfied by the interaction vertices.Comment: 14 pages, 5 figures, revte

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    Controlling anomalous stresses in soft field-responsive systems

    Get PDF
    We report a new phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bounded dimers constituted by induced dipoles. The great variety of stress regimes includes non-monotonous behaviors, multi-resonances, negative viscosity effect and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phasesComment: 5 pages, 6 figures, submitted to PR

    Lattice-Boltzmann Method for Geophysical Plastic Flows

    Full text link
    We explore possible applications of the Lattice-Boltzmann Method for the simulation of geophysical flows. This fluid solver, while successful in other fields, is still rarely used for geotechnical applications. We show how the standard method can be modified to represent free-surface realization of mudflows, debris flows, and in general any plastic flow, through the implementation of a Bingham constitutive model. The chapter is completed by an example of a full-scale simulation of a plastic fluid flowing down an inclined channel and depositing on a flat surface. An application is given, where the fluid interacts with a vertical obstacle in the channel.Comment: in W. Wu, R.I. Borja (Edts.) Recent advances in modelling landslides and debris flow, Springer Series in Geomechanics and Geoengineering (2014), ISBN 978-3-319-11052-3, pp. 131-14

    Shear viscosity of the Quark-Gluon Plasma from a virial expansion

    Full text link
    We calculate the shear viscosity η\eta in the quark-gluon plasma (QGP) phase within a virial expansion approach with particular interest in the ratio of η\eta to the entropy density ss, i.e. η/s\eta/s. The virial expansion approach allows us to include the interactions between the partons in the deconfined phase and to evaluate the corrections to a single-particle partition function. In the latter approach we start with an effective interaction with parameters fixed to reproduce thermodynamical quantities of QCD such as energy and/or entropy density. We also directly extract the effective coupling \ga_{\rm V} for the determination of η\eta. Our numerical results give a ratio η/s0.097\eta/s\approx 0.097 at the critical temperature TcT_{\rm c}, which is very close to the theoretical bound of 1/(4π)1/(4\pi). Furthermore, for temperatures T1.8TcT\leq 1.8 T_{\rm c} the ratio η/s\eta/s is in the range of the present experimental estimates 0.10.30.1-0.3 at RHIC. When combining our results for η/s\eta/s in the deconfined phase with those from chiral perturbation theory or the resonance gas model in the confined phase we observe a pronounced minimum of η/s\eta/s close to the critical temperature TcT_{\rm c}.Comment: Published in Eur. Phys. J. C, 7 pages, 2 figures, 3 tabl

    Dirac-like Monopoles in Three Dimensions and Their Possible Influences on the Dynamics of Particles

    Get PDF
    Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities of them when are considered in Minkowski or Euclidian space are mentioned. However, by virtue of the structure of the space-time in which they are considered a number of differences among them take place. Furthermore, we pay attention to some consequences of these objects when acting upon usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating non-minimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.Comment: 20 pages. Latex format. No figures. Accepted for publication in Phys. Rev.

    High-resolution x-ray study of the nematic - smectic-A and smectic-A - smectic-C transitions in 8barS5-aerosil gels

    Full text link
    The effects of dispersed aerosil nanoparticles on two of the phase transitions of the thermotropic liquid crystal material 4-n-pentylphenylthiol-4'-n-octyloxybenzoate 8barS5 have been studied using high-resolution x-ray diffraction techniques. The aerosils hydrogen bond together to form a gel which imposes a weak quenched disorder on the liquid crystal. The smectic-A fluctuations are well characterized by a two-component line shape representing thermal and random-field contributions. An elaboration on this line shape is required to describe the fluctuations in the smectic-C phase; specifically the effect of the tilt on the wave-vector dependence of the thermal fluctuations must be explicitly taken into account. Both the magnitude and the temperature dependence of the smectic-C tilt order parameter are observed to be unaffected by the disorder. This may be a consequence of the large bare smectic correlation length in the direction of modulation for this transition. These results show that the understanding developed for the nematic to smectic-A transition for octylcyanobiphenyl (8CB) and octyloxycyanobiphenyl (8OCB) liquid crystals with quenched disorder can be extended to quite different materials and transitions.Comment: 7 pages, 8 figure
    corecore