229 research outputs found

    The Effects of Micro-vessel Curvature Induced Elongational Flows on Platelet Adhesion

    Get PDF
    The emerging profile of blood flow and the cross-sectional distribution of blood cells have far reaching biological consequences in various diseases and vital internal processes, such as platelet adhesion. The effects of several essential blood flow parameters, such as red blood cell free layer width, wall shear rate, and hematocrit on platelet adhesion were previously explored to great lengths in straight geometries. In the current work, the effects of channel curvature on cellular blood flow are investigated by simulating the accurate cellular movement and interaction of red blood cells and platelets in a half-arc channel for multiple wall shear rate and hematocrit values. The results show significant differences in the emerging shear rate values and distributions between the inner and outer arc of the channel curve, while the cell distributions remain predominantly uninfluenced. The simulation predictions are also compared to experimental platelet adhesion in a similar curved geometry. The inner side of the arc shows elevated platelet adhesion intensity at high wall shear rate, which correlates with increased shear rate and shear rate gradient sites in the simulation. Furthermore, since the platelet availability for binding seems uninfluenced by the curvature, these effects might influence the binding mechanics rather than the probability. The presence of elongational flows is detected in the simulations and the link to increased platelet adhesion is discussed in the experimental results

    A MapReduce Framework for Analysing Portfolios of Catastrophic Risk with Secondary Uncertainty

    Get PDF
    AbstractThe design and implementation of an extensible framework for performing exploratory analysis of complex property portfolios of catastrophe insurance treaties on the Map-Reduce model is presented in this paper. The framework implements Aggregate Risk Analysis, a Monte Carlo simulation technique, which is at the heart of the analytical pipeline of the modern quantitative insurance/reinsurance pipeline. A key feature of the framework is the support for layering advanced types of analysis, such as portfolio or program level aggregate risk analysis with secondary uncertainty (i.e. computing Probable Maximum Loss (PML) based on a distribution rather than mean values). Such in-depth analysis is not supported by production-based risk management systems since they are constrained by hard response time requirements placed on them. On the other hand, this paper reports preliminary experimental results to demonstrate that in-depth aggregate risk analysis can be realized using a framework based on the MapReduce model

    A Current Induced Transition in atomic-sized contacts of metallic Alloys

    Get PDF
    We have measured conductance histograms of atomic point contacts made from the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low bias voltage (below 300 mV) resemble those of the noble metals whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.Comment: 5 pages, 6 figure
    corecore