155 research outputs found

    SSDB spaces and maximal monotonicity

    Get PDF
    In this paper, we develop some of the theory of SSD spaces and SSDB spaces, and deduce some results on maximally monotone multifunctions on a reflexive Banach space.Comment: 16 pages. Written version of the talk given at IX ISORA in Lima, Peru, October 200

    Quantum Circuits for the Unitary Permutation Problem

    Full text link
    We consider the Unitary Permutation problem which consists, given nn unitary gates U1,,UnU_1, \ldots, U_n and a permutation σ\sigma of {1,,n}\{1,\ldots, n\}, in applying the unitary gates in the order specified by σ\sigma, i.e. in performing Uσ(n)Uσ(1)U_{\sigma(n)}\ldots U_{\sigma(1)}. This problem has been introduced and investigated by Colnaghi et al. where two models of computations are considered. This first is the (standard) model of query complexity: the complexity measure is the number of calls to any of the unitary gates UiU_i in a quantum circuit which solves the problem. The second model provides quantum switches and treats unitary transformations as inputs of second order. In that case the complexity measure is the number of quantum switches. In their paper, Colnaghi et al. have shown that the problem can be solved within n2n^2 calls in the query model and n(n1)2\frac{n(n-1)}2 quantum switches in the new model. We refine these results by proving that nlog2(n)+Θ(n)n\log_2(n) +\Theta(n) quantum switches are necessary and sufficient to solve this problem, whereas n22n+4n^2-2n+4 calls are sufficient to solve this problem in the standard quantum circuit model. We prove, with an additional assumption on the family of gates used in the circuits, that n2o(n7/4+ϵ)n^2-o(n^{7/4+\epsilon}) queries are required, for any ϵ>0\epsilon >0. The upper and lower bounds for the standard quantum circuit model are established by pointing out connections with the permutation as substring problem introduced by Karp.Comment: 8 pages, 5 figure

    Scalar Representation and Conjugation of Set-Valued Functions

    Full text link
    To a function with values in the power set of a pre-ordered, separated locally convex space a family of scalarizations is given which completely characterizes the original function. A concept of a Legendre-Fenchel conjugate for set-valued functions is introduced and identified with the conjugates of the scalarizations. Using this conjugate, weak and strong duality results are proven.Comment: arXiv admin note: substantial text overlap with arXiv:1012.435

    Closedness type regularity conditions for surjectivity results involving the sum of two maximal monotone operators

    Full text link
    In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator S(+p)+T()S(\cdot + p)+T(\cdot), where pXp\in X and SS and TT are maximal monotone operators on the reflexive Banach space XX. Then, this is used to obtain sufficient conditions for the surjectivity of S+TS+T and for the situation when 00 belongs to the range of S+TS+T. Several special cases are discussed, some of them delivering interesting byproducts.Comment: 11 pages, no figure

    Local maximum points of explicitly quasiconvex functions

    Get PDF
    This work concerns generalized convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold: first, to show that any local maximum point of an explicitly quasiconvex function is a global minimum point whenever it belongs to the intrinsic core of the function’s domain and second, to characterize strictly convex normed spaces by applying this property for a particular class of convex functions

    Normal Cones and Thompson Metric

    Full text link
    The aim of this paper is to study the basic properties of the Thompson metric dTd_T in the general case of a real linear space XX ordered by a cone KK. We show that dTd_T has monotonicity properties which make it compatible with the linear structure. We also prove several convexity properties of dTd_T and some results concerning the topology of dTd_T, including a brief study of the dTd_T-convergence of monotone sequences. It is shown most of the results are true without any assumption of an Archimedean-type property for KK. One considers various completeness properties and one studies the relations between them. Since dTd_T is defined in the context of a generic ordered linear space, with no need of an underlying topological structure, one expects to express its completeness in terms of properties of the ordering, with respect to the linear structure. This is done in this paper and, to the best of our knowledge, this has not been done yet. The Thompson metric dTd_T and order-unit (semi)norms u|\cdot|_u are strongly related and share important properties, as both are defined in terms of the ordered linear structure. Although dTd_T and u|\cdot|_u are only topological (and not metrical) equivalent on KuK_u, we prove that the completeness is a common feature. One proves the completeness of the Thompson metric on a sequentially complete normal cone in a locally convex space. At the end of the paper, it is shown that, in the case of a Banach space, the normality of the cone is also necessary for the completeness of the Thompson metric.Comment: 36 page

    Set-optimization meets variational inequalities

    Full text link
    We study necessary and sufficient conditions to attain solutions of set-optimization problems in therms of variational inequalities of Stampacchia and Minty type. The notion of a solution we deal with has been introduced Heyde and Loehne, for convex set-valued objective functions. To define the set-valued variational inequality, we introduce a set-valued directional derivative and we relate it to the Dini derivatives of a family of linearly scalarized problems. The optimality conditions are given by Stampacchia and Minty type Variational inequalities, defined both by the set valued directional derivative and by the Dini derivatives of the scalarizations. The main results allow to obtain known variational characterizations for vector valued optimization problems

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Farkas-Type Results for Vector-Valued Functions with Applications

    Get PDF
    The main purpose of this paper consists of providing characterizations of the inclusion of the solution set of a given conic system posed in a real locally convex topological space into a variety of subsets of the same space defined by means of vector-valued functions. These Farkas-type results are used to derive characterizations of the weak solutions of vector optimization problems (including multiobjective and scalar ones), vector variational inequalities, and vector equilibrium problems.This research was partially supported by MINECO of Spain and FEDER of EU, Grant MTM2014-59179-C2-1-P, by the project DP160100854 from the Australian Research Council, and by the project B2015-28-04: “A new approach to some classes of optimization problems” from the Vietnam National University - HCM city, Vietnam

    Optimal Fair Computation

    Get PDF
    A computation scheme among n parties is fair if no party obtains the computation result unless all other n-1 parties obtain the same result. A fair computation scheme is optimistic if n honest parties can obtain the computation result without resorting to a trusted third party. We prove, for the first time, a tight lower bound on the message complexity of optimistic fair computation for n parties among which n-1 can be malicious in an asynchronous network. We do so by relating the optimal message complexity of optimistic fair computation to the length of the shortest permutation sequence in combinatorics
    corecore