16,976 research outputs found
Computational fluid dynamics: Transition to design applications
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented
Wealth Effects of Banks' Rights to Market and Originate Annuities
We examine wealth effects, for banks and insurers, of bank rights to sell and underwrite annuities. The stock-price reactions to four court and regulatory decisions are consistent with expectations of bank gains at insurers' expense. Cross-sectionally, smaller, riskier insurers with higher distribution costs and substantial annuity business sustain larger wealth losses. Larger, riskier bank holding companies with fee- based and consumer business gain most, consistent with the extension of federal safety-net guarantees as a source of gains. Banking stock-price reactions to the Supreme Court's decision are opposite other findings, possibly reflecting unfulfilled expectations of a broader mandate for expanded bank rights.Annuities, VALIC, financial modernization, deregulation, deposit insurance, Blackfeet National Bank, event studies
Long term time-lapse microgravity and geotechnical monitoring of relict salt-mines, Marston, Cheshire, UK.
The area around the town of Northwich in Cheshire, U. K., has a long history of catastrophic ground subsidence caused by a combination of natural dissolution and collapsing abandoned mine workings within the underlying Triassic halite bedrock geology. In the village of Marston, the Trent and Mersey Canal crosses several abandoned salt mine workings and previously subsiding areas, the canal being breached by a catastrophic subsidence event in 1953. This canal section is the focus of a long-term monitoring study by conventional geotechnical topographic and microgravity surveys. Results of 20 years of topographic time-lapse surveys indicate specific areas of local subsidence that could not be predicted by available site and mine abandonment plan and shaft data. Subsidence has subsequently necessitated four phases of temporary canal bank remediation. Ten years of microgravity time-lapse data have recorded major deepening negative anomalies in specific sections that correlate with topographic data. Gravity 2D modeling using available site data found upwardly propagating voids, and associated collapse material produced a good match with observed microgravity data. Intrusive investigations have confirmed a void at the major anomaly. The advantages of undertaking such long-term studies for near-surface geophysicists, geotechnical engineers, and researchers working in other application areas are discussed
Photon counting compressive depth mapping
We demonstrate a compressed sensing, photon counting lidar system based on
the single-pixel camera. Our technique recovers both depth and intensity maps
from a single under-sampled set of incoherent, linear projections of a scene of
interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional
reconstructions are required to image a three-dimensional scene. We demonstrate
intensity imaging and depth mapping at 256 x 256 pixel transverse resolution
with acquisition times as short as 3 seconds. We also show novelty filtering,
reconstructing only the difference between two instances of a scene. Finally,
we acquire 32 x 32 pixel real-time video for three-dimensional object tracking
at 14 frames-per-second.Comment: 16 pages, 8 figure
Measurement of the elastic scattering cross section of neutrons from argon and neon
Background: The most significant source of background in direct dark matter
searches are neutrons that scatter elastically from nuclei in the detector's
sensitive volume. Experimental data for the elastic scattering cross section of
neutrons from argon and neon, which are target materials of interest to the
dark matter community, were previously unavailable. Purpose: Measure the
differential cross section for elastic scattering of neutrons from argon and
neon in the energy range relevant to backgrounds from (alpha,n) reactions in
direct dark matter searches. Method: Cross-section data were taken at the
Triangle Universities Nuclear Laboratory (TUNL) using the neutron
time-of-flight technique. These data were fit using the spherical optical
model. Results: The differential cross section for elastic scatting of neutrons
from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model
parameters for the elastic scattering reactions were determined from the best
fit to these data. The total elastic scattering cross section for neon was
found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model
predictions. Compared to a local optical-model for 40Ar, the elastic scattering
cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions:
These new data are important for improving Monte-Carlo simulations and
background estimates for direct dark matter searches and for benchmarking
optical models of neutron elastic scattering from these nuclei
Conceptual design of a Manned-Unmanned Lunar Explorer /MULE/
Manned-unmanned lunar explorer systems desig
Development of a Computational Fluid Dynamics Simulation Model for a Horizontal Axis Tidal Stream Turbine
Tidal stream turbines have generated significant research interests due to their major advantages over some other forms of renewable generation. As this technology is relatively new, deployment of tidal turbines is hindered by various problems. Tidal turbines see a non-uniform incoming flow in most situations. This causes differences in power generation and loading at different positions in the rotation of a turbine blade, which affects turbine performance and downstream fluid dynamics. This paper shows the development of a computational fluid dynamics (CFD) model which is currently being used to study such effects. Discussions on the effect of node counts and clustering on mesh independence, along with a study identifying the appropriate turbulence models for the corresponding flow condition will be covered. Findings were validated with experimental data, and used to construct a complete CFD model which is currently being used to study the effect of a non-uniform velocity profile over turbine performance, loading on turbine blades, and wake
A model for the screen printing of Newtonian fluids
A preliminary investigation into aspects of the off-contact screen-printing process is presented. A mathematical model for the printing of a thin film of Newtonian fluid is proposed, in which the screen is modelled as a permeable membrane, and the entire region above and below the screen is flooded. By drawing upon widely used industrial circuit printing practices, the distinguished limit of greatest interest to this industry is identified. Numerical and asymptotic solutions of this distinguished limit are presented that reproduce many of the features observed in industrial screen-printing
CCD photometry of 2060 Chiron, 1991 January
Observations of 2060 Chiron was performed on 7 to 8 Jan. 1991 with the Mt. Palomar 1.52 m telescope in the Gunn-R passband. On-chip field stars were used to perform differential reductions. The repeatability of the 5.9 hour light curve was excellent, both within a night and from night to night. No evidence for short-term secular variations similar to those seen last year by both Luu and Jewitt (1990) and Buratti and Dunbar (1991) is seen in the new light curve. Chiron's rotational light curve appears strikingly similar to that obtained a year earlier by Luu and Jewitt (1990), both in amplitude and shape. Both light curves show strongly correlated changes over a timescale of perhaps 15 minutes. These same features were marginally visible in the 1986 light curve. Such behavior is believed to be evidence that Chiron may be more aspherical than the 4 percent intensity variation might otherwise indicate, and favors a viewing geometry where the subearth latitude is rather low. Chiron was much fainter in 1985, when a partial light curve was obtained by Marcialis. Due to the lower sampling rate of these early data, no conclusions can be made regarding the high-frequency light curve structure back then. All three of these light curves differ significantly from that obtained by Buratti and Dunbar (1991), one week before the observations of Luu and Jewitt. The Chiron field was calibrated using Landolt standards on Ut 15 Mar. 1991. A mean R-magnitude of 15.6 + or - 0.1 was found. Variability of 2060 Chiron was demonstrated over timescales of minutes, hours, and years. An intense campaign was urged to monitor the photometric behavior of Chiron throughout the 1990s
Zero temperature optical conductivity of ultra-clean Fermi liquids and superconductors
We calculate the low-frequency optical conductivity sigma(w) of clean metals
and superconductors at zero temperature neglecting the effects of impurities
and phonons. In general, the frequency and temperature dependences of sigma
have very little in common. For small Fermi surfaces in three dimensions (but
not in 2D) we find for example that Re sigma(w>0)=const. for low w which
corresponds to a scattering rate Gamma proportional to w^2 even in the absence
of Umklapp scattering when there is no T^2 contribution to Gamma. In the main
part of the paper we discuss in detail the optical conductivity of d-wave
superconductors in 2D where Re sigma(w>0) \propto w^4 for the smallest
frequencies and the Umklapp processes typically set in smoothly above a finite
threshold w_0 smaller than twice the maximal gap Delta. In cases where the
nodes are located at (pi/2, pi/2), such that direct Umklapp scattering among
them is possible, one obtains Re sigma(w) \propto w^2.Comment: 7 pages, 3 figure
- …
