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Photon counting compressive depth
mapping

Gregory A. Howland,1,∗ Daniel J. Lum,1 Matthew R. Ware2 and John
C. Howell1

1University of Rochester Department of Physics and Astronomy, 500 Wilson Blvd, Rochester,
NY 14618, USA

2Department of Physics, Campus Box 4560, Illinois State University, Normal, IL 61790, USA
∗ghowland@pas.rochester.edu

Abstract: We demonstrate a compressed sensing, photon counting lidar
system based on the single-pixel camera. Our technique recovers both
depth and intensity maps from a single under-sampled set of incoherent,
linear projections of a scene of interest at ultra-low light levels around 0.5
picowatts. Only two-dimensional reconstructions are required to image
a three-dimensional scene. We demonstrate intensity imaging and depth
mapping at 256× 256 pixel transverse resolution with acquisition times
as short as 3 seconds. We also show novelty filtering, reconstructing
only the difference between two instances of a scene. Finally, we acquire
32× 32 pixel real-time video for three-dimensional object tracking at 14
frames-per-second.

© 2013 Optical Society of America

OCIS codes: (110.6880) Three-dimensional image acquisition; (110.1758) Computational
imaging; (280.3640) Lidar.
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1. Introduction

High-resolution three-dimensional imaging, particularly using time-of-flight (TOF) lidar, is
very desirable at ultra-low light levels. Such weakly-illuminated systems are safer, require less
power, and are more difficult to intercept than their high-power equivalents. Potential applica-
tions include large- and small-scale surface mapping, target recognition, object tracking, ma-
chine vision, eye-safe ranging, and atmospheric sensing [1–5].

In a TOF lidar system, a scene is illuminated by laser pulses. The pulses reflect off targets in
the scene and return to a detector. Correlating the returning signal with the outgoing pulse train
provides the TOF, which is converted to distance-of-flight (DOF). Transverse spatial resolution
can be obtained either by scanning through the scene pixel-by-pixel or by using a detector array,
such as a time-resolving CCD.

To achieve low-light capability, many recent efforts use photon-counting detectors for the de-
tection element(s). Such detectors provide shot-noise limited detection with single-photon sen-
sitivity and sub-ns timing. Examples include established technologies such as photo-multiplier
tubes and geiger-mode avalanche photo-diodes (APDs), as well as more experimental devices
such as superconducting nano-wires [6].

While they provide exceptional sensitivity and noise performance, photon-counting systems
are challenging to scale to high transverse resolution. Systems that scan a single-element de-
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tector benefit from mature technology, but suffer from acquisition times linearly proportional
to the spatial resolution. Significant per-pixel dwell times limit real-time performance to low
resolution.

Alternately, researchers have constructed photon counting detector arrays, such as that used
by MIT Lincoln Labs JIGSAW [7,8] and its successors [9]. Fabrication difficulties limit sensor
sizes to a current-best resolution of 32×128 pixels, with 32×32 pixels available commercially
[10]. These sensors suffer from high dark count rates, pixel cross-talk, and significant readout
noise. For TOF ranging, each pixel must be simultaneously correlated with the pulse train, a
resource intensive process.

The goal is to overcome these challenges without increasing system cost and complexity.
A promising option uses a standard, single-element, photon counting detector as the detection
element in a compressive sensing, single-pixel camera [11]. The single-pixel camera lever-
ages a scene’s compressibility to recover an image from an under-sampled series of incoherent
projections. This is accomplished by imaging the scene onto a sequence of psuedo-random pat-
terns placed on a spatial light modulator (SLM) or digital micro-mirror device (DMD). The
inner-product of the scene and pattern is measured by a single-element, “bucket” detector. Op-
timization routines then recover the image from many fewer projections than pixels, often less
than 10 percent.

The single-pixel camera can be adapted for TOF depth mapping by switching to active,
pulsed illumination. Standard CS techniques require measurements to be linear projections
of the signal of interest. Unfortunately, in a TOF single-pixel camera, the depth map is non-
linearly related to the acquired measurements, as they contain both depth and intensity infor-
mation [12, 13]. Current approaches mitigate or altogether avoid this issue in various ways. In
2011, we presented a proof-of-principle lidar camera where CS is used only to acquire trans-
verse information [14]. Range is determined by gating on a TOF of interest. This reduces to the
conventional single-pixel camera problem, but requires separate reconstructions for each depth
of interest. Li et. al. present a similar, gated system (GVLICS) that recovers 3D images [15].
Kirmani et. al. [13] introduce a more sophisticated protocol (CoDAC) that incorporates para-
metric signal processing and a reconstruction process exploiting sparsity directly in the depth
map. This system uses intermediate optimization steps to keep the problem linear.

CS can also be applied directly in the time-domain, and has been proposed for non-spatially
resolving lidar systems [16]. In principle, one could combine this with transverse CS for a full
3D voxel reconstruction. This signal is extremely high dimensional and presents substantial
measurement and reconstruction challenges.

In this manuscript, we present an alternative single-pixel camera adaptation for photon-
counting depth mapping and intensity imaging. Rather than recover the depth map directly,
we separately recover an intensity map and an intensity × depth map, where the depth map is
simply their ratio. Linear projections of these signals are easily acquired using a TOF single-
pixel camera with a photon counting detection element, with available light levels around 0.5
picowatts. Our approach is straightforward and uses standard CS formulations and solvers. We
demonstrate imaging at resolutions up to 256× 256 pixels with practical acquisition times as
low as 3 seconds. We also show novelty filtering; finding the difference between two instances
of a scene without recovering the full scenes. Finally, we demonstrate video acquisition and
object tracking at 32×32 pixel resolution and 14 frames per second.

2. Compressive sensing

2.1. Introduction to CS

Compressive sensing [17] is a measurement technique that uses optimization to recover a
sparsely represented, n-dimensional signal X from m < n measurements. CS exploits a signal’s

#193236 - $15.00 USD Received 15 Jul 2013; revised 12 Sep 2013; accepted 14 Sep 2013; published 30 Sep 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.023822 | OPTICS EXPRESS  23824



compressibility to require fewer measurements than the Nyquist limit. The detection process
can be modeled by interacting X with a m×n sensing matrix A such that

Y = AX +Γ, (1)

where Y is a m-dimensional vector of measurements and Γ is a m-dimensional noise vector.
Because m < n, and rows of A are not necessarily linearly independent, a given set of measure-
ments does not specify a unique signal.

To recover the correct signal, CS formulates an objective function to select the sparest X
consistent with the measurements:

min
X

1
2
||Y −AX ||22 + τg(X), (2)

where τ is a scaling constant between penalties. The first penalty is a least-squares term that en-
sures the signal matches the measured values. The second penalty, g(X), is a sparsity-promoting
regularization function. Typical g(X) include the `1 norm of X or the total variation of X . For a
k-sparse signal (only k significant elements), exact reconstruction is possible for m ∝ k log(n/k)
measurements. In practice, m is often only a few percent of n. For minimum m, the sensing ma-
trix must be incoherent with the sparse basis, with the counter-intuitive result that random,
binary sensing vectors work well [18].

2.2. Single-pixel camera

The quintessential application of CS is the single-pixel camera [11]. Duarte et. al. cleverly im-
plemented an incoherent sensing matrix by imaging a scene onto a digital micro-mirror device
(DMD) of the sort found in digital movie projectors. The DMD is an array individually address-
able mirrors that can be selectively oriented to reflect light either to a single-pixel “bucket” de-
tector or out of the system. The measured intensity yields the inner-product of a pattern placed
on the DMD with the scene of interest. To perform the set of measurements described in Eq. (1),
pseudorandom binary patterns are placed sequentially on the DMD, where each pattern repre-
sents a row of sensing matrix A. Elements of Y are the measured intensities for corresponding
patterns. An image of the scene is then recovered by an algorithm that solves Eq. (2).

CS and the single-pixel camera sparked a mini-revolution in sensing as researchers found
their ideas could be easily and directly applied to common problems across a breadth of fields
from magnetic resonance imaging [19] to radio astronomy [20] to quantum entanglement char-
acterization [21, 22].

3. Compressive depth mapping

3.1. Adapting SPC for depth mapping

The single-pixel camera can be adapted for depth mapping at very low light levels by switching
to active, pulsed illumination and using a photon-counting detection element. Our setup is given
in Fig. 1. A scene containing targets at different depths is flood illuminated by a pulsed laser
diode. The scene is imaged onto a DMD which implements an incoherent sensing matrix. Light
from DMD “on” pixels is redirected to a photo-multiplier module that detects individual photon
arrivals. A time-correlated single-photon counting module (TCSPC) correlates photon arrivals
with the outgoing pulses to find each photon’s TOF. Full experimental specifications are given
in Table 1.

Recovery of a two-dimensional, intensity only image XI (a gray-scale image) is identical to
the normal single-pixel camera. Patterns from the sensing matrix are placed sequentially on the
DMD. For each pattern, the number of detected photons is recorded to obtain a measurement
vector YI . Eq. (2) is then used to find the intensity image XI .
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Fig. 1. Experimental Setup A 780 nm, 10 Mhz, 2 ns pulsed laser diode flood illuminates
a scene containing targets at different depths. Returning pulses are imaged onto a DMD
array with resolution up to 256× 256 pixels. A polarizer prevents flares from specular
reflection. Light reflecting off DMD “on” pixels is directed through a narrow-band filter
to a single-photon sensitive PMT module that produces TTL pulses. Typical count rates
are about 2 million photons per second. A TCSPC module time-correlates photon arrivals
with the outgoing pulse train to determine a TOF for each detected photon. A series of
psuedorandom, binary patterns consisting of randomly permuted, zero-shifted Hadamard
patterns are placed on the DMD with per-pattern dwell times as short as 1/1440 sec. These
implement an incoherent sensing matrix. For each pattern, the number of photon arrivals
and their total TOF is recorded. Our protocol is then used to reconstruct the intensity image
and the depth map.

Unfortunately, recovering a depth map XD from the TOF information is not straightforward
because the measurements are nonlinear in XD. Consider photon arrivals during one pattern.
Each photon has a specific TOF, but is only spatially localized to within the sensing pattern.
It is possible, and likely, that multiple photons will arrive from the same location in the scene.
Individual detection events therefore contain information about both intensity and depth.

Consider the signal XQ made up of the element-wise product XQ = XI .XD. Unlike XD, XQ can
be linearly sampled by summing the TOF of each photon detected during the measurement.
This can be seen by expanding this total TOF sum over the contribution from each pixel in the
scene, such that

YQ = AXQ =

{
C

N

∑
j=1

Ai jη jTj

}
for i = 1 to m, (3)

where i is an index over sensing patterns and j is an index over all DMD pixels. Ai j is the DMD
status (0 or 1) of pixel j during the ith pattern, η j is the number of photons reaching pixel j
during the measurement, and Tj is the TOF of a photon arriving at pixel j. C is a constant factor
converting photon number to intensity and TOF to depth. Each pixel where Ai j = 1 (the DMD
mirror is “on”) contributes η jTj to the TOF sum for pattern i. This is a product of an intensity
(photon number) and a depth (TOF). XQ is therefore equal to Cη .T . Because Eq. (3) takes the
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form of Eq. (1), Eq. (2) is suitable for recovering XQ.
The depth map is simply the element-wise division of XQ by XI . Note that YI and YQ are

acquired simultaneously from the same signal; YI represents that number of photon arrivals for
each pattern and YQ is the sum of photon TOF for each pattern. The only increase in complexity
is that two optimization problems must now be solved, but these are the well understood linear
problems characteristic of CS.

3.2. Protocol

A slightly more sophisticated approach including noise reduction vastly improves practical
performance. The protocol we use for depth map recovery is as follows:

1. Acquire measurement vectors YQ = AXQ and YI = AXI , where XQ = XI .XD.

2. Use sparsity maximization routine (Eq. (2)) on YQ to recover noisy X̄Q.

3. Apply hard thresholding to X̄Q. The subset of non-zero coefficients in a sparse represen-
tation of X̄Q now form an over-determined, dense recovery problem.

4. Perform a least squares debiasing routine on non-zero coefficients of X̄Q in the sparse
representation to find their correct values and recover XQ.

5. Take significant coefficients of XI to be identical to XQ. Perform the same least squares
debiasing on these coefficients of XI .

6. Recover XD by taking Nz(XI).XQ./XI , where Nz(x) = 1 for non-zero x and 0 otherwise.

7. (optional) In the case of very noisy measurements, perform masking on XD and XI .

First, we acquire measurement vectors YI and YQ as previously described. Rather than in-
dependently solve Eq. (2) for both measurement vectors, we only perform sparsity maximiza-
tion on YQ. In practice, solvers for Eq. (2) tend to be more effective at determining significant
coefficients than finding their correct values, particularly given noisy measurements [23]. We
therefore rely on sparsity maximization only to determine which coefficients are significant. We
subject the noisy, recovered X̄Q to uniform, hard thresholding [24] in a sparse representation,
which forces the majority of the coefficients to zero. The sparse basis is typically wavelets, but
may be the pixel basis for simple images.

The subset of coefficients remaining after thresholding is considered significant. If only these
coefficients are considered, the problem is now over-determined and a least-squares debiasing
routine is applied to find their correct values and yield the signal XQ [23]. We assume the
significant coefficients for XI are the same as for XQ, and apply least-squares debiasing to XI as
well. Finally, we recover the depth map XD by taking

XD = Nz(XI).XQ./|XI | (4)

where Nz(p) = 1 for nonzero p and 0 otherwise. This prevents a divide-by-zero situation when
an element of XI = 0, meaning no light came from that location.

For very noisy measurements, the sparsity maximization in steps 2-3 gives accurate outlines
for targets in the scene, but poorly recovers pixel values. After the least squares debiasing in
steps 4 and 5, values are more accurate, but the outlines can become distorted. A best-of-both-
worlds solution is to threshold the result of step 4 in the pixel basis to create a binary object
mask. This mask can optionally be applied to the final XI and XD for spatial clean up.
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Table 1. System Specifications

Parameter Comments

Laser Laser Diode mounted in Thorlabs TCLDM9

Repetition Rate 10 MHz

Pulse Width 2 ns = 60 cm

Wavelength 780 nm

Average Output Power 4 mW

Average Detected Power 0.5 pW (2 megacounts per second)

Spectral Filters 780/10 nm Bandpass, Optical Depth 6+

DMD Device Digital Light Innovations D4100 with 1024×
768 DMD, operated in binary expansion mode
at 1440 frames per second

Spatial Resolution images: 256×256 pixels

video: 32×32 pixels

Detector Horiba TBX-900C Photomultiplier Module
with 9 mm2 active area

Jitter < 200 ps

Dark Count Rate < 200 counts per second

Data Acquisition PicoQuant PicoHarp 300 operating in time-
tagging mode

Imaging Lens Focal Length 75 mm

4. Experimental setup

Our experimental setup is given in Fig. 1, with specifications given in Table 1. Targets are flood
illuminated with 2 ns, 780 nm laser pulses with a 10 MHz repetition rate. Average illumination
power is 4 mW. The scene is imaged onto a DMD array, where on pixels are redirected through
a 780/10 nm bandpass filter to a photon-counting photo-muliplier module. A sequence of m
sensing patterns are displayed on the DMD at 1440 Hz. For each pattern, the number of photon
arrivals and the sum of photon TOF is recorded. If 1/1440 seconds is an insufficient per-pattern
dwell time tp, the pattern sequence is repeated r times so that tp = r/1440 and the total exposure
time t is t = mtp = mr/1440. The average detected photon rate is 2 million counts per second,
or 0.5 picowatts.

Sensing vectors (patterns) are randomly selected rows of a zero-shifted, randomly-permuted
Hadamard matrix. The Hadamard transform matrix is closely related to the Fourier transform
matrix, but entries only take real values 1 or −1. The zero shifted version sets all −1 values
to zero. When randomly permuted, they make practical sensing vectors because repeated cal-
culations of AX in the reconstruction algorithms can be computed via fast transform. This is
computationally efficient because the fast transform scales logarithmically and the sensing ma-
trix does not need to be stored in memory [25].

The sparsity promoting regularization is either the signal’s `1 norm or total variation de-
pending on the scene and exposure time. For `1 minimization, we use a gradient projection
solver [23]. For TV minimization, We use the TVAL3 solver [25]. The sparse representation
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for wavelet thresholding and least-squares debiasing is Haar Wavelets. Higher order Daubechies
wavelets were tested, but did not significantly improve results for test scenes presented in this
manuscript. They may offer improvements for more complicated scenes in future work.

Processing times for reconstructions vary based on transverse resolution, scene complexity,
and noise. Test scenes in this manuscript were recovered either at resolutions of n = 256×256
or n= 32×32. A 256×256 reconstruction consistently took less than 5 minutes, while a 32×32
reconstruction took less than 5 seconds. The solvers and supporting scripts are implemented in
Matlab, with no particular emphasis on optimizing their speed. The majority of computational
resources are used for performing Fast Hadamard Transforms and reading and writing large
files. If more efficient file formats are used, and the Fast Hadamard Transform is computed on
a GPU or DSP, reconstruction speeds approach real-time.

4.1. Noise considerations

While an exhaustive noise analysis is beyond the scope of this manuscript and a subject of
future work, some important qualitative aspects should be explored. There are two dominant
sources of error in the measurements of YI and YQ. The first is simply shot noise, a fundamental
uncertainly in number of measured photons limiting the measured SNR to

√
η for η detected

photons. Because incoherent measurements used for compressive sensing use half the available
light on average, the information they convey is contained in their deviation from the mean. As
a general rule, a successful reconstruction requires the standard deviation of the measurement
vector to exceed the shot noise. Compressive sensing has been shown to work well in the
presence of shot noise in comparison to other sensing methodologies. For more information
see Refs. [11, 26, 27].

The other primary error sources are detector dark counts and ambient light. All photon-
counting detectors have the possibility of firing without absorbing a photon. For a particular
detector, these events occur at some rate and the timing is uniformly distributed. For a statisti-
cally significant acquisition time, the dark counts simply add constant values to both YQ and YI .
These values can be easily measured by blocking the detector and observing count rates in the
absence of signal. They can then be subtracted from future measurement vectors.

Ambient light is also uncorrelated with the pulsed illumination, so ambient photon arrivals
are uniformly distributed. If the ambient light is spatially uniform, it adds a constant value to
both YQ and YI because half the DMD pixels are always directed to the detector. If the ambient
light is not spatially uniform, the contribution may be different for different sensing patterns.
In either case, m-dimensional ambient vectors AQ and AI can be obtained by disabling the
pulsed laser and performing the measurements normally used to obtain YQ and YI . These can
then be subtracted from YQ and YI to ameliorate the ambient light. This will also remove the
dark counts.

If the ambient light is spatially uniform, the addition of a second detector which measures
light from DMD “off” pixels can also mitigate the ambient light. In this case, it is no longer
necessary to use zero-shifted sensing patterns, they can instead consist of values “1”, which are
directed to the “on” pixel detector, and “-1”, which are directed to the “off” pixel detector. The
sensing vector corresponding to this matrix is just the difference between sensing vectors ob-
tained by each individual detector. Because each detector receives the same amount of ambient
light, it will be subtracted out.

The best way to mitigate unwanted detection events is to avoid them altogether. A massive
advantage of single-pixel camera technology is the ability operate at wavelengths where de-
tector arrays are difficult to fabricate, such as the infrared. For the active, narrowband sources
used in lidar systems, high optical-density, narrow-band filters can reject the vast majority of
unwanted light. Our system received less than 100 dark counts per second and approximately
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1000 counts per second from ambient light. With over 106 signal counts per second, these neg-
ligibly effected our results and the amelioration schemes discussed were not needed. They are
likely to become important in more real-world applications beyond the laboratory.

5. Results
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Fig. 2. Long Exposure A scene consisting of cardboard cutouts (a) is imaged at n = 256×
256 resolution from m = 0.2n random projections with a 6.07 minute exposure time. The
protocol recovers a high quality intensity map (b) and intensity× DOF map (c). Their ratio
is the depth map (d).

5.1. Simple scene

The first test case is a simple scene containing cardboard cutouts of the letters “U” and “R” as
well as the outline of a truck. The objects were placed at to-target distances of 480 cm , 550
cm, and 620 cm respectively. Figure 2 shows a high quality reconstruction with resolution n =
256×256 pixels, m = 0.2n = 13108, and tp = 40/1440 for an exposure time of 6.07 minutes.
The sparsity promoter was TV. Both the intensity and depth map are accurately recovered.

Pictures of the same scene with much shorter acquisition times are given in Fig. 3. Figure
3(a) and 3(b) show the intensity and depth map for m = 0.1n = 6554 and tp = 5/1440 seconds
for a total exposure time of 23 seconds. Figure 3(a) and 3(b) gives results for a exposure with
m = .07n = 4558 and tp = 1/1440 seconds for a total exposure time of 3 seconds. The optional
masking process (protocol step 7) was used. While the reconstructions are considerably noisier
than the long exposure case, the objects are recognizable and the average depths are accurate.

Note that the shortest dwell-time per pattern for the DMD is 1/1440 sec. To raster scan
at this speed for n = 256× 256 pixels would require 46 seconds, so both results in Fig. 3 are
recovered faster than it is possible to raster scan. If the same dwell times were used (tp = 5/1440
and tp = 1/1440 seconds respectively), the raster scan would take about 228 seconds and 46
seconds. Note that many significant pixels in the recovered intensity images in Fig. 3 have less
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Fig. 3. Short Exposure Scene from Fig. 2 acquired with rapid acquisition times. The in-
tensity and depth maps in (a) and (b) were acquired in 23 seconds while (c) and (d) were
acquired in only 3 seconds. At these exposure times, the intensity map regularly contains
less than one photon per significant pixel, so it is impossible to raster scan.

than 1 photon per pixel. Therefore, even the longer raster scans would struggle to produce a
good picture because they cannot resolve fewer than 1 photon per pixel. Our protocol is more
efficient because each incoherent projection has flux contributed from many pixels at once,
measuring half the available light on average.

A generalization of the raster scan is the basis scan, a scan through basis vectors of an alter-
native signal representation (such as a Hadamard decomposition). The hardware in most lidar
systems is based on either a detector array or raster scanning, so it is not suitable for perform-
ing a basis scan. However, with specialized equipment, such as the DMD in our setup, basis
scanning is possible. Basis scanning still requires n measurements, so the minimum possible ac-
quisition time (tp = 1/1440 seconds) is the same as for raster scanning, in this case n× tp = 46
seconds. However, a basis scan using Hadamard patterns benefits from the same increased flux
per measurement as the incoherent projections of CS, so SNR is improved over raster scanning.
Nevertheless, CS has been shown to outperform basis scan with fewer measurements. Since the
two schemes require the same hardware, CS is preferred. For a comparison of CS with other
sensing techniques, including raster and basis scan, see Ref. [11].

5.2. Natural scene

A n = 256× 256 pixel measurement of a more complicated scene containing real objects is
given in Fig. 4. The scene consists of a small cactus, a shoe, and a microscope placed at to-
target distances of 465 cm, 540 cm, and 640 cm respectively. A photograph of the scene is
given in Fig. 4(a). The scene was acquired with m = 0.3n a per-pattern dwell time tp = 50/1440
seconds for an exposure time of 11.37 minutes. The sparsity promoter was the `1 norm in the
Haar wavelet representation.
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Fig. 4. Natural Scene A scene consisting of a cactus, shoe, and microscope is imaged at
n = 256× 256 pixel resolution with m = 0.3n and a per-pattern dwell time tp = 50/1440
seconds.

Figure 4(b), Fig. 4(c), and Fig. 4(d) show the reconstructed intensity, intensity × DOF, and
depth map respectively. All objects are recognizable and the to-target distances are accurately
recovered. Noise is slightly higher than the simpler scene of cardboard cutouts.

5.3. Depth calibration

The photon TOF measured by the TCSPC module is trivially converted to DOF by multiplying
by speed of light c. This DOF includes the round trip distance traveled by illuminating pulses
as well as delays introduced by cables and electronics. The actual distance to target is linearly
related to the measured DOF.

To determine this relationship and probe the system’s depth accuracy, we took images of a
simple square, white, cardboard cutout placed a known distance from the camera. The cutout
was sequentially moved away from the camera in small increments and the reconstructed depths
were recorded.

Results are given in Fig. 5. Figure 5(a) shows a photograph of the object, with a typical recon-
structed depth map given in Fig. 5(b). Figure 5(c) shows a coarse grained result when the object
was moved in 15.25 cm (6 in) increments over a 259 cm (108 in) range. Each measurement was
performed at 32× 32 pixel transverse resolution with m = 0.1n = 102. The per-pattern dwell
time was 1/1440 seconds, so each depth map was acquired in .07 seconds. The pulse length
was 2 ns, or 60 cm.

Figure 5(c) provides the reconstructed DOF as function of the distance to object. The meas-
ured DOF is averaged over the recovered object. A linear fit shows very good agreement with
the measurements, with a slope of 1.91. This is slightly less than the expected 2 (for a round-trip
flight) because the result includes cable transit times. Fit error bars represent a 95% confidence
interval.

We performed an additional fine resolution set of measurements where the object was moved
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Fig. 5. Depth Calibration Depth maps of a rectangular cardboard cutout (a) are acquired
at n = 32× 32 pixel resolution with a typical reconstruction given in (b). The cutouts to-
target distance was increased in increments of 15.52 cm (c) and 2.54 cm (d). Depths can
accurately recovered to less than 2.54 cm for this scene.

in 2.54 cm (1 in) increments over a 30.4 cm (12 in) range. All other parameters are identical to
the coarse measurements. Results are shown in Fig. 5(d). Despite 60 cm pulse lengths, depth
mapping is accurate to less than 2.54 cm. While uncertainty is slightly larger than the coarse
case, the fits agree to within the confidence interval.

5.4. Novelty filtering

For many applications such as target localization, high frame-rate video, and surveillance, it is
useful to look at the difference between realizations of a scene at different times. Such novelty
filtering removes static clutter to reveal changes in the scene. This is traditionally accomplished
by measuring the current signal X (c) and subtracting from it a previously acquired reference
signal X (r) to find ∆X = X (c)−X (r).

Compressive sensing is particularly well suited for novelty filtering because the difference
signal ∆X can be directly reconstructed [28, 29]. Consider acquiring incoherent measurement
vectors for both X (r) and X (c) as in Eq. (1), using the same sensing matrix A for both signals.
Instead of separately solving Eq. (2) for each signal, first difference their measurement vectors
to find

∆Y = Y (c)−Y (r) (5)
∆Y = A∆X . (6)

Because Eq. (6) has the same form as Eq. (1), the optimization routine can be performed
directly on ∆Y to obtain ∆X without ever finding X (c) or X (r). Furthermore, the requisite number
of measurements m depends only on the sparsity of ∆X . For small changes in a very cluttered
scene, the change can be much sparser than the full scene. It is often possible to recover the
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Fig. 6. Novelty Filtering (a) and (b) give photographs of two instances of a scene, where
the ‘R’ has changed positions (including depth). (c) and (d) show high quality, long 6.07
minute exposure depth map reconstructions for the full current scene and difference image
respectively. (e) and (f) show corresponding short 37 second exposure depth map recon-
structions. Negative values in the difference image indicate the object’s former location.

novelty with too few measurements to reconstruct the full scene.
Figure 6 gives an example of using our system for novelty filtering in intensity and depth.

A photograph of a current scene containing several objects is shown in 6(a). Figure 6(b) pho-
tographs a prior reference scene. In the current scene, the cardboard cutout ‘R’ has been moved,
both transversely and from a range of 480 cm to a range of 560 cm.

Figure 6(c) and 6(d) give long exposure reconstructions of the full current depth map and the
difference depth map respectively. Exposure parameters were n = 256×256 pixels, m = 0.2n,
and tp = 40/1440 sec for an exposure time t = 6.07 minutes. The sparsity promoter was TV.
The difference reconstruction contains only the ‘R’ object that moved. Note that there are two
copies of the ‘R’. One is negative, indicating the objects former position, and one is positive,
indicating the objects new position.

Figure 6(e) and 6(f) show short exposure reconstructions for the current scene and the differ-
ence image. The number of measurements was reduced to m= 0.02n= 1311 with tp = 40/1440
for an exposure time of 37 seconds. Masking was performed. For this acquisition time, the static
clutter is very poorly imaged and is difficult to recognize in the full scene. The difference image
effectively removes the clutter and gives a recognizable reconstruction of the novelty. Again,
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this is far faster than raster-scanning, which requires at least two 45 second scans for differenc-
ing.

5.5. Video and object tracking
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Fig. 7. Movie Frames from a depth-map movie (Media 1), of a three-dimensional pendulum
consisting of a baseball suspended by a 170 cm rope swinging through a 25 degree solid
angle. The transverse resolution is 32×32 pixels with a frame rate of 14 frames per second.
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Fig. 8. Object Tracking The expected values for transverse (x,y) and range (z) coordinates
are given in (a), (b), and (c) as a function of frame number. Blue circles show expected
values obtained from reconstructed depth maps, while green lines give sinusoidal fits. (d)
shows a 3D parametric plot of the pendulum’s trajectory.

At lower spatial resolution, the system is capable of video and object tracking. To demon-
strate this, we acquired video at 32×32 pixel resolution of a three-dimensional pendulum con-
sisting of a baseball suspended from the ceiling by a rope. The lever arm was 170 cm and the
pendulum oscillated through a solid angle of approximately 25 degrees. The three dimensions
are not oscillating in phase, so the trajectory is elliptical.

Movie frames were acquired with m = 0.1n = 99 with a per-pattern dwell time tp = 1/1440
sec. Each frame required .07 sec to acquire for a frame rate slightly exceeding 14 frames per
second. The sparsity promoter was TV . Sample frames showing the pendulum moving through
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a single period are given in Fig. 7, where alternate frames are skipped for presentation. We
clearly recover images of the pendulum oscillating in all three dimensions. The full movie can
be viewed online (Media 1).

The pendulum’s position can be tracked by taking expected values for its transverse location
and averaging over its range to determine a to-target distance. Figure 8 shows the computed
pendulum trajectory. Figs 8(a), 8(b) and 8(c) give the expected x, y and z values for pendulum
location as a function of frame number. These can be combined to yield the three-dimensional,
parametric trajectory given in Fig. 8(d). Sinusoidal fits are in good agreement with the expected
values, particularly in the depth dimension.

6. Protocol trade-offs and limitations

The strength of our protocol lies in its simplicity; the well-known single-pixel camera can be
adapted for ranging by simply adding a pulsed source. All the standard, linear CS techniques
are otherwise used. This is because our protocol treats XQ as an image itself. Our technique is
also very natural for photon counting as per-photon TOF is easy to measure and sum. However,
this ease-of-use does come with some potential trade-offs.

Our protocol does not consider sparsity in the depth map itself. Depth maps have been shown
to generally be sparser than intensity images [13]. Protocols which directly recover the depth
map, such as in Ref. [13], can leverage this sparsity to require fewer measurements. Because in-
coherent measurements are nonlinear in the depth map, this comes at the cost of more complex
measurement and reconstruction schemes.

In our protocol, XQ is treated like an image. This is reasonable because it is simply a scaling
of the intensity map by the depth map; it maintains much of the structure of an image and
still qualitatively appears like an image to a viewer. Because XQ is treated like an image, we
use sparsity maximizers common for images such as wavelets and total variation. In these
representations, XQ is likely to be more complex (less sparse) than XI , so the complexity of XQ is
a limiting factor reducing the number of measurements. It is possible that other representations
may be more appropriate for XQ. A full analysis of the complexity of XQ and its absolute best
representation remains an open problem.

Characteristics of the laser pulse, such as its width and shape, are also not included in the
protocol. Incorporating these in the optimization may improve range resolution at the cost of
a more complex objective function. The current system can accurately discriminate between
objects placed less than a pulse width apart, but this discrimination breaks down as the relative
photon TOF between objects becomes ambiguous. This is acceptable for many ranging tasks,
but very high range resolution depth mapping may require improvements.

Finally, our objective Eq. (2) uses the standard least squares penalty to ensure reconstruc-
tions are consistent with measurements. At very low photon numbers, where the Poissonian
photon number distribution deviates markedly from Gaussian statistics, a logarithmic penalty
gives superior performance but requires different solvers [26]. Data sets used in this manuscript
typically averaged thousands of photons per measurement, so this was a non-issue. This change
would be critical if photon numbers approached single-digits per measurement.

Ultimately, increased complexity in the protocol must be weighed against potentially dimin-
ishing returns. In its current form, our protocol demonstrates most of the benefits CS provides
over standard techniques. We do not claim the scheme is fundamentally optimal; rather it is
a practical approach that also provides a new perspective on the compressive depth mapping
problem.
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7. Conclusion

We demonstrate a simple protocol for extending the single-pixel camera to time-of-flight depth
mapping with a photon counting detector. Our approach requires only linear measurements so
standard compressive sensing techniques can be used. The photon-counting detector allows us
to work at sub-picowatt light levels. We show imaging 256×256 pixel resolution with practical
acquisition times. By differencing random projections of two instances of a scene, we directly
recover novelty images to efficiently remove static clutter and show only changes in a scene. We
also acquire 32×32 pixel video at 14 frames per second to enable accurate three-dimensional
object tracking. Our system is much easier to scale to high spatial-resolution than existing
photon-counting lidar systems without increased cost or complexity.

Single-pixel camera type devices are very flexible because operational parameters can easily
be changed just by switching detectors. While our proof-of-principle system operates in the lab
at 780 nm, it could adapt to infrared by switching to InGaAs APDs or superconducting nano-
wire detectors [6]. If faster acquisition times are needed, one could use linear mode detectors or
sum the output from multiple photon-counting detector. Hyperspectral imaging is possible with
a frequency sensitive detector. Our protocol is a simple, effective way to add high resolution
depth mapping to many low-light sensing applications.
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