2,716 research outputs found

    Lessons in Reading Reform: Finding What Works

    Get PDF
    Evaluates elements of reforms designed to improve reading scores among students identified as lagging behind, including extended-length English classes and school years. Considers the role of teachers' experience, lessons learned, and policy implications

    Information and Opportunistic Behavior in Federal Crop Insurance Programs

    Get PDF
    Opportunistic behavior in crop insurance can arise due to asymmetric information between producers and the Federal Crop Insurance Corporation. Producers who insure fields using transitional yields based on county average yields or who select options such as buy-up coverage or revenue insurance may increase their return from crop insurance. Using field-level crop insurance contract data for several crops in five growing regions, we find evidence that producers can profit from using buy-up coverage, revenue insurance, and transitional yields and that the level of producer opportunism is crop but not necessarily land-quality specific and is greater due to premium subsidization.opportunistic behavior, crop insurance, buy-up, revenue, transitional yields

    The Effects of Transitional Yields on Adverse Selection in Crop Insurance

    Get PDF
    Transitional yields based on county average can be used by producers as the basis to obtain crop insurance on fields that have not previously produced the crop. Using field-level crop insurance contract data for several crops in five different growing regions we examine the impact of this asymmetric information on adverse selection. Our results indicate that adverse selection does exist from the use of transitional yields and that it is crop specific but not land-quality specific.adverse selection, crop insurance, transitional yields, Risk and Uncertainty, Q18,

    Tree Species Control Rates of Free-Living Nitrogen Fixation in a Tropical Rain Forest

    Get PDF
    Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest “natural” source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well

    Controls Over Leaf Litter Decomposition in Wet Tropical Forests

    Get PDF
    Tropical forests play a substantial role in the global carbon (C) cycle and are projected to experience significant changes in climate, highlighting the importance of understanding the factors that control organic matter decomposition in this biome. In the tropics, high temperature and rainfall lead to some of the highest rates of litter decomposition on earth, and given the near-optimal abiotic conditions, litter quality likely exerts disproportionate control over litter decomposition. Yet interactions between litter quality and abiotic variables, most notably precipitation, remain poorly resolved, especially for the wetter end of the tropical forest biome. We assessed the importance of variation in litter chemistry and precipitation in a lowland tropical rain forest in southwest Costa Rica that receives \u3e5000 mm of precipitation per year, using litter from 11 different canopy tree species in conjunction with a throughfall manipulation experiment. In general, despite the exceptionally high rainfall in this forest, simulated throughfall reductions consistently suppressed rates of litter decomposition. Overall, variation between species was greater than that induced by manipulating throughfall and was best explained by initial litter solubility and lignin:P ratios. Collectively, these results support a model of litter decomposition in which mass loss rates are positively correlated with rainfall up to very high rates of mean annual precipitation and highlight the importance of phosphorus availability in controlling microbial processes in many lowland tropical forests

    Nutrient Regulation of Organic Matter Decomposition in a Tropical Rain Forest

    Get PDF
    errestrial biosphere–atmosphere CO2 exchange is dominated by tropical forests, so understanding how nutrient availability affects carbon (C) decomposition in these ecosystems is central to predicting the global C cycle\u27s response to environmental change. In tropical rain forests, phosphorus (P) limitation of primary production and decomposition is believed to be widespread, but direct evidence is rare. We assessed the effects of nitrogen (N) and P fertilization on litter-layer organic matter decomposition in two neighboring tropical rain forests in southwest Costa Rica that are similar in most ways, but that differ in soil P availability. The sites contain 100–200 tree species per hectare and between species foliar nutrient content is variable. To control for this heterogeneity, we decomposed leaves collected from a widespread neotropical species, Brosimum utile. Mass loss during decomposition was rapid in both forests, with B. utile leaves losing \u3e80% of their initial mass in (DOM) rather than direct CO2 mineralization. While P fertilization did not significantly affect mass loss in the litter layer, it did stimulate P immobilization in decomposing material, leading to increased P content and a lower C:P ratio in soluble DOM. In turn, increased P content of leached DOM stimulated significant increases in microbial mineralization of DOM in P-fertilized soil. These results show that, while nutrients may not affect mass loss during decomposition in nutrient-poor, wet ecosystems, they may ultimately regulate CO2 losses (and hence C storage) by limiting microbial mineralization of DOM leached from the litter layer to soil

    Quantum Simulations on a Quantum Computer

    Get PDF
    We present a general scheme for performing a simulation of the dynamics of one quantum system using another. This scheme is used to experimentally simulate the dynamics of truncated quantum harmonic and anharmonic oscillators using nuclear magnetic resonance. We believe this to be the first explicit physical realization of such a simulation.Comment: 4 pages, 2 figures (\documentstyle[prl,aps,epsfig,amscd]{revtex}); to appear in Phys. Rev. Let

    Benchmarking quantum control methods on a 12-qubit system

    Full text link
    In this letter, we present an experimental benchmark of operational control methods in quantum information processors extended up to 12 qubits. We implement universal control of this large Hilbert space using two complementary approaches and discuss their accuracy and scalability. Despite decoherence, we were able to reach a 12-coherence state (or 12-qubits pseudo-pure cat state), and decode it into an 11 qubit plus one qutrit labeled observable pseudo-pure state using liquid state nuclear magnetic resonance quantum information processors.Comment: 11 pages, 4 figures, to be published in PR

    Impacts of terrain attributes on economics and the environment: costs of reducing potential nitrogen pollution in wheat production

    Get PDF
    The economic cost of achieving desired environmental outcomes from uniform and variable rate fertilizer application technologies depends both on market forces and agronomic properties. Using spatial econometric methods, we analyze the impact of nitrogen fertilizer supply by terrain attribute on the yield and protein content of hard red spring wheat grown in EasternWashington as well as the impact on residual nitrogen.We find significant association with all three. The economic impact of nitrogen restrictions depends critically on both prices and level of the restriction. Uniform application of nitrogen was found to economically outperform variable rate application, but variable rate application provided positive environmental benefits due to less residual nitrogen

    Experimental Drought in a Tropical Rain Forest Increases Soil Carbon Dioxide Losses to the Atmosphere

    Get PDF
    Climate models predict precipitation changes for much of the humid tropics, yet few studies have investigated the potential consequences of drought on soil carbon (C) cycling in this important biome. In wet tropical forests, drought could stimulate soil respiration via overall reductions in soil anoxia, but previous research suggests that litter decomposition is positively correlated with high rainfall fluxes that move large quantities of dissolved organic matter (DOM) from the litter layer to the soil surface. Thus, reduced rainfall could also limit C delivery to the soil surface, reducing respiration rates. We conducted a throughfall manipulation experiment to investigate how 25% and 50% reductions in rainfall altered both C movement into soils and the effects of those DOM fluxes on soil respiration rates. In response to the experimental drought, soil respiration rates increased in both the −25% and −50% treatments. Throughfall fluxes were reduced by 26% and 55% in the −25% and −50% treatments, respectively. However, total DOM fluxes leached from the litter did not vary between treatments, because the concentrations of leached DOM reaching the soil surface increased in response to the simulated drought. Annual DOM concentrations averaged 7.7 ± 0.8, 11.2 ± 0.9, and 15.8 ± 1.2 mg C/L in the control, −25%, and −50% plots, respectively, and DOM concentrations were positively correlated with soil respiration rates. A laboratory incubation experiment confirmed the potential importance of DOM concentration on soil respiration rates, suggesting that this mechanism could contribute to the increase in CO2 fluxes observed in the reduced rainfall plots. Across all plots, the data suggested that soil CO2 fluxes were partially regulated by the magnitude and concentration of soluble C delivered to the soil, but also by soil moisture and soil oxygen availability. Together, our data suggest that declines in precipitation in tropical rain forests could drive higher CO2 fluxes to the atmosphere both via increased soil O2 availability and through responses to elevated DOM concentrations
    corecore