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Abstract

The economic cost of achieving desired environmental outcomes from uniform and variable rate fertilizer application technologies depends both
on market forces and agronomic properties. Using spatial econometric methods, we analyze the impact of nitrogen fertilizer supply by terrain
attribute on the yield and protein content of hard red spring wheat grown in Eastern Washington as well as the impact on residual nitrogen. We find
significant association with all three. The economic impact of nitrogen restrictions depends critically on both prices and level of the restriction.
Uniform application of nitrogen was found to economically outperform variable rate application, but variable rate application provided positive
environmental benefits due to less residual nitrogen.

JEL classifications: Q00, Q18
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1. Introduction

Stabilizing and improving environmental quality represents
an important goal of several U.S. regulatory agencies as well
as a broad societal goal. Actually achieving such goals has be-
come a monumental task because influencing human behavior
so that the new behavior is more environmentally friendly has
proved particularly challenging (Hahn and Stavins, 1991; Hahn
et al., 2003).† To improve environmental quality, one must first
understand the economic forces driving individual decisions as
well as the physical and biological processes that convert the
collective decisions into environmental consequences.

Market forces, such as prices, have been demonstrated to
be among the important factors that drive individual decisions.
Physical and biological processes that affect the interface be-
tween agricultural production and the environment are primar-
ily agronomic. As a result, both market forces and agronomic
relationships must be understood in order to influence agricul-
tural production decisions in environmentally positive ways.
The motivation behind this research is to incorporate detailed

∗Corresponding author. Tel.: 402-472-0366. E-mail address: cwalters7@
unl.edu (C. G. Walters).
†[Correction added on 8 March 2017, after first online publication: The in-text

citation “Steward, 1987”. was removed in consultation with the corresponding
author, as it was not included in the References.]

consideration of market forces and agronomic properties in
an analysis of producers’ economic costs of achieving desired
environmental outcomes. We focus specifically on potential
nitrogen pollution from production of hard red spring wheat
(HRSW) production on rolling terrain in Eastern Washington.

Effective nitrogen management is critical for the economic
production of crops and the long-term protection of the envi-
ronment (Lopez-Bellido et al., 2006). Agricultural producers
apply nitrogen to increase yields which, in wheat production,
also increases protein content. However, removal rates of ap-
plied nitrogen in harvested cereal grain are estimated to average
only 33%, leaving the remainder potentially subject to loss from
the intended agricultural production system (Raun and Johnson,
1999).1 Much of the remaining nitrogen is immobilized (i.e.,
changed from an inorganic to an organic form) and may be
recovered in the future through mineralization (changed from
organic to inorganic form). Nevertheless, losses of available ni-
trogen supplies to the environment (i.e., pollution) can also be
very large, as high as 35% (Kumar and Goh, 2000).

Empirical evidence documents that one of the most important
motivations that translates market forces and agronomic rules
into individual production choices is the goal of maximizing

1 Raun and Johnson (1999) note that both the nitrogen application strategy
and type of nitrogen used can impact nitrogen loss.
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profit. Management of risk and environmental stewardship
goals may also be important factors in a farmer’s preference hi-
erarchy, and may temper actions aimed at profit maximization.
In each case, input and output prices are primary signals of mar-
ket forces. For example, consider the low-profit scenario where
wheat price is low and nitrogen fertilizer price is high. In this
scenario, producers typically respond by applying less nitrogen,
thereby lowering the probability of nitrogen pollution. The op-
posite can also be true; high wheat price and low nitrogen price
would incentivize higher nitrogen application rates, thereby in-
creasing the probability of nitrogen pollution. Fertilizer (input)
and wheat (output) prices matter in determining both the level
of environmental quality and the economic impact on producers
from maintaining or improving environmental quality.

Technology, particularly site-specific management, may play
a large role in maintaining or improving environmental qual-
ity while minimizing adverse economic impact on producers.
Agricultural producers typically apply nitrogen to their fields
at a uniform rate. But fields are seldom uniform in their nitro-
gen requirements. For fields with different intrafield nitrogen
needs, a uniform application of nitrogen results in overapplica-
tion for some areas and underapplication for other areas (Fiez
et al., 1995; Mamo et al., 2003; Pan et al., 1997). Underapplica-
tion reduces yield, revenue, and profit. In addition to adversely
affecting profit, overapplication can result in pollution when ex-
cess available nitrogen impacts ecosystems by contaminating
groundwater, streams, lakes, and oceans. Hence, determination
of the intrafield variables that affect potential nitrogen pollu-
tion and the resulting economics of reducing nitrogen pollution
would be a valuable contribution to achieving desired envi-
ronmental outcomes from agricultural production and possibly
even enhancing profit.

Terrain attributes (i.e., topographic properties) have previ-
ously been used to help explain spatial variability of crop yields
(Green and Erskine, 2004). Terrain attributes may be linked to
differences in yields through a variety of mechanisms. They
include both the spatial and topographical features like slope
and aspect (direction to which a slope faces). They also in-
clude underlying soil properties through their systematic spatial
distribution—e.g., adjoining plots can be expected to have sim-
ilar soil properties, other things equal, and hilltops often have
“thinner” soil than bottom lands. Terrain attributes may also
help explain potential nitrogen pollution. Therefore, identify-
ing terrain attributes that can lead to higher amounts of nitrogen
pollution could be a valuable step toward reducing nitrogen pol-
lution.

Several studies have addressed the impact of spatial variabil-
ity in yield response to nitrogen. Lambert et al. (2006) found
that the spatial variation of crop response to both nitrogen and
phosphate is significant. Fiez et al. (1995) identified terrain at-
tributes for which nitrogen fertilizer uptake efficiency was low
and nitrogen loss percentages were high. Anselin et al. (2004)
found that nitrogen response differs by landscape position and
identified conditions under which site-specific application may
be profitable.

While there has been considerable economic research based
on the yield response of various crops to nitrogen application
levels, less has focused on the economic effects of grain protein
response to available nitrogen. Further, none has addressed the
environmentally important residual nitrogen effects (i.e., the
amount of nitrogen unaccounted for after measuring the amount
available during the growing season less the amount found at
harvest) of alternative nitrogen application levels when terrain
attributes vary within a field.

We seek to fill an important gap in the literature by evaluating
the economic effect on wheat growers from reducing residual
nitrogen through use of variable rate technology on fields with
multiple terrain attributes.2 With regard to the effects of nitrogen
application, residual nitrogen is treated as a proxy for potential
nitrogen pollution.3 Due to complex soil and landscape-scale
processes, it is difficult to measure the actual level of nitrogen
pollution. To circumvent this problem, we measure the amount
of nitrogen that has the highest probability of becoming pollu-
tion and label it residual nitrogen. Residual nitrogen represents
the amount of nitrogen not accounted for by crop production
and soil measurements.

We examine the effect of nitrogen supply and terrain at-
tributes on yield and protein content of HRSW production as
well as residual nitrogen levels at a research site in Eastern
Washington with rolling terrain. We identify important terrain
attributes and determine whether an innovative spatial weights
matrix that accounts for elevation results in greater statistical ef-
ficiency in parameter estimation. We also assess the economics
of uniform and variable rate nitrogen application methods under
alternative prices and nitrogen regulations.

The importance of examining the economics of protein as
well as yield effects of nitrogen application is due to protein
premiums and discounts in HRSW price. A premium is added
to the price for each ¼ percentage point above the base of
14%, and a discount is subtracted from the price for each ¼
percentage point below the base. Traditionally, the premium-
discount structure has been asymmetric with discounts larger
than premiums.

This article proceeds as follows. We first develop the meth-
ods used for analysis. The experiment and data used in the
estimation are reported in the subsequent section. We present
and interpret findings in the results section. Conclusions and
discussion of implications occur in the final section.

2 The use of variable rate technology based on terrain attributes is only one
method to match inputs to crop needs. For example, Biermacher et al. (2009)
conducted an economic analysis of a plant-sensing system to determine nitrogen
requirements. Diacono et al. (2013) identified other methods, including the use
of sensors, airborne images, near-infrared bands, and various diagnostic tools
as alternative methods to match inputs to crop needs. Neither of these papers
considered impacts on residual nitrogen levels.

3 Some of the residual nitrogen is emitted as “gaseous plant emission” (Raun
and Johnson 1999), part of which may be returned to the atmosphere as inert
nitrogen that is not a serious pollutant. Thus, while residual nitrogen may be a
useful proxy for potential nitrogen pollution, it is far from a perfect measure.
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2. Method of analysis

In this section, we first develop response equations for yield,
protein, and residual nitrogen. We then explain the need for
using spatial autocorrelation regression methods based on the
rolling topography and develop a unique spatial weights matrix
to improve statistical efficiency of the estimated model. We also
build a constrained optimization model to simulate economic
and environmental outcomes.

2.1. Nitrogen response equations

Fertilizer response equations are formulated to evaluate the
effect of available nitrogen and terrain attributes on yield, pro-
tein, and residual nitrogen. We allow for the possibility that the
yield, protein, and residual nitrogen response to nitrogen sup-
ply are quadratic. Although there has been much debate about
the appropriate functional form for fertilizer response func-
tions (e.g., Berck et al., 2000; Paris, 1992), recent work by Liu
et al. (2006) found that the quadratic yield response function
for nitrogen fertilizer could not be rejected for corn produc-
tion in Michigan over the alternatives of von Liebig linear and
plateau or von Liebig quadratic and plateau response functions
when tested with field-level data.4 Consequently, we employ
the quadratic response function because it is both flexible and
computationally convenient (Lau, 1986).

Based on previous research that found that corn yield, soil
properties, and erosion were strongly related to terrain attributes
(e.g., Kaspar et al., 2003), we include terrain attributes. Wheat
producers also apply nitrogen to increase or maintain protein
level. Because crop yield can vary within a field, it is likely that
protein will also vary due to terrain attributes.

If both yield and protein of wheat vary within a field, then
it is likely that residual nitrogen also does. Identifying terrain
attributes that result in the highest residual nitrogen response
to available nitrogen could also identify locations that would
achieve greatest environmental benefit from a reduction in ap-
plied nitrogen.

4 As a robustness check, we estimated the von Liebig “linear plus plateau”
function using the method used by Tembo et al. (2008). Results indicate that
the quadratic response function is preferred over the linear plus plateau because
the knot point (intersection of the linear response and plateau) occurs at applied
nitrogen level of over 1,600 lbs per acre, well beyond conventional application
rates. This result is due to the small slope parameter and high plateau. We
also considered the von Liebig “quadratic plus plateau” response function and
found it unsuitable because the knot point could not be linked. This result is
due to the small slope parameter, a negative squared slope parameter and high
plateau. The reason both the linear and quadratic stochastic plateau functions
performed poorly is likely due to the nature of our data. Our data measure
nitrogen variability within a field with varying terrain attributes, not different
nitrogen application rates as is commonly found in plot data. Our experiment
used a uniform nitrogen application rate over the entire field. Nitrogen avail-
ability came from measurements at different locations of spring soil nitrogen
(nitrogen available to plants), applied nitrogen, and the change of nitrogen
from an available to unavailable form during the growing season (determined
by agronomists using soil characteristics). As a result, our data are considerably
different from nitrogen experimental plot data.

We analyze 10 terrain attributes that fully characterize the
highly variable terrain in the experiment—global irradiation,
planform curvature, profile curvature, tangential curvature, flow
direction, specific catchment area, wetness index, slope, eleva-
tion, and aspect. Global irradiation measures the amount of
annual solar energy a surface receives based on the geometry
of the sun, earth, and field; consequently, a north facing slope
would have a smaller irradiation measure than a south facing
slope.5 Planform (or plan) curvature measures the rate of slope
change along the contour (horizontal plane) (Kimberling et al.,
2012); it describes whether the flow is converging (concave,
negative values) or diverging (convex, positive values) from a
point. Profile curvature measures the rate of slope change along
the direction of the slope; it describes whether the flow is accel-
erating (convex, negative value) or decelerating (concave, pos-
itive values). Tangential curvature measures the inclined plane
perpendicular to the slope.6 Flow direction measures the direc-
tion of steepest decent from a point. Specific catchment area
measures the size of the contributing area. Wetness index mea-
sures the hydrological process at a point by taking into account
the size of the upslope contributing area and slope. Slope mea-
sures the angle (steepness) of the surface. Elevation measures
the vertical height. Aspect measures the direction to which the
slope is facing, assigning values in degrees from north.

In addition to terrain attributes, we incorporate time and pre-
vious crop as regressors in the response functions. Time dummy
variables control for year-to-year weather variations. Previous
crop dummy variables control for rotational benefits yet to be
realized.

Each response equation (Y = yield, protein, or residual ni-
trogen) for geo-referenced location j (j = 1, . . . ,704) in year t
(t = 1, . . . ,6) is specified as a function of nitrogen supply (N),
squared nitrogen supply, terrain attribute (K, k = 1, . . . ,10),
previous crop dummy variables (I, i = 1, . . . ,5), interactions
between available nitrogen and terrain attribute, and dummy
variable for year (T):

Yjt = αo + β1Njt + β2N
2
j t +

10∑
k = 1

βk+2Kjk +
5∑

i = 1

βi+12Iji

+
10∑

k = 1

βk+17KjkNjt +
5∑

t = 1

βt+27Tt + μjt . (1)

Contemporaneous correlation is likely to exist among the
three equations. Since they include the same regressors, there
would be no efficiency gain by estimating them as a seemingly

5 Global irradiation combines slope and aspect variables.
6 All three curvature values were calculated from digital elevation models of

varying cell size using the D8 method in Arc GIS 8.2 (ESRI, 2002). The D8
method uses the eight cells that surround a given cell and calculates attributes
based on elevation differences between the center of the cell and the surrounding
eight cells (Wilson and Gallant, 2000). The calculation of curvature values is
based on the second derivative of polynomials fit to the surface using the D8
method.
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unrelated system. Consequently, each equation is estimated
independently. With only two observations for each geo-
referenced location and three years between observations (as
explained subsequently), we do not use a panel data estimator.7

Prior to estimation, the angular terrain variable, aspect, mea-
sured in radians, was transformed into a linear variable, labeled
as trasp. Trasp is a continuous variable that assigns a value of
zero to land facing north to northeast and a value 1 to land
facing south to southwest (Moisen and Frescino, 2002):

Trasp = 1 − cos(( π
180 ) (aspect − 30))

2
. (2)

2.2. Modeling spatial autocorrelation

Considered independently, production units with the same
terrain attributes can appear at significant distances from each
other. For modelers, this is desirable because standard statistical
models generally assume independence among observations or
data points. However, in agronomic research data, it is more
likely that land parcels with close proximity share common
characteristics (e.g., soil properties), which brings the validity
of the independence assumption into question (Anselin et al.,
2004). Failing to account for valid spatial autocorrelation would
result in inefficient parameter estimates that bias the test statis-
tics. Consequently, we appended a spatial component to Eq.
(1) to correct for spatial autocorrelation. We used a spatial
weights matrix that considered all uphill neighbors with the
closest neighbors having more influence on the error term than
neighbors farther away.8

Standard spatial autocorrelation techniques assume a two-
dimensional spatial effect (i.e., latitude and longitude). With a
nonflat surface, like a hill, the two-dimensional assumption is
insufficient. While nitrogen can move uphill in limited ways,
it generally moves down a slope with water and eventually to
a stream or river. Nitrogen deposits at a location in the field
can be influenced by locations higher in elevation, thus creat-
ing a vertical spatial interdependence. Not accounting for the
three-dimensional spatial structure in the spatial econometric
methodology can lead to biased variance. In this study, we

incorporated a third axis, elevation, into the spatial weights
matrix. It effectively models the spatial effect as three dimen-

7 These equations (without subsequent spatial parameters) were estimated
both by OLS and a panel data estimator. Results were similar both in parameter
size and significance.

8 Alternative spatial weight matrix design examples include the queen and
rook contiguity matrixes. However, without prior information to guide con-
struction of the spatial matrix, we allow for the most flexible matrix—one that
accounts for influence from all uphill neighbors.

sional. We determined whether a spatial weights matrix that
includes positions higher in elevation results in greater statis-
tical efficiency of parameter estimation than when elevation is
not considered.

Incorporating the spatial component into Eq. (1), we esti-
mated the following set of equations:

Yjt = αo + β1Njt + β2N
2
j t +

10∑
k =1

βk+2Kjk +
5∑

i =1

βi+12Iji

+
10∑

k =1

βk+17KjkNjt +
5∑

t =1

βt+27Tt + ρZ + μjt , (3)

where ρ is the spatial lag autoregression coefficient, Z =
(W1•W2)Yj, W1 and W2 are the spatial weight matrices, and
• refers to the Hadamard product (element by element multipli-
cation). The Hadamard product of W1 and W2 provides a spatial
weights matrix of 1.0 divided by the Euclidian distance of points
higher in elevation than the reference point. The spatial weights
matrix W1 was used to specify neighbors (defined by elevation)
and is composed of zeroes and ones.9 A one indicates that the
point is higher in elevation than the reference point, zero other-
wise. The spatial weights matrix W2 is composed of values of
1 divided by the Euclidian distance from the reference point.
The diagonals in W1 and W2 were set to zero and rows are
rescaled, so they sum to one. This allows for the total effect
of all neighbors to be independent of the number of neighbors.
Spatial autocorrelation is expected to exist only between points
within the same year and not between points in different years;
therefore, between year points are set to zero. Construction of
this type of spatial autocorrelation resulted in a block diagonal
spatial weights matrix (i.e., blocks along the main diagonal give
within-year distance, and off-diagonal blocks are zero).

For the spatial weights matrix, we determined the Euclidian
distance between all points. Each observation was assigned a
unique value for latitude and longitude, (xn, zn). With the first
and second observations having values (x1, z1) and (x2, z2),
respectively, and defining �z = z2 − z1, we calculated distance
in feet, �d, by

�d = 0.7498 arctan

(√
(cos(x2) sin(�z))2 + (cos(x1) sin(x2) − sin(x1) cos(x2) cos(�z))2

sin(x1) sin(x2) + cos(x1) cos(x2) cos(�z)

)
. (4)

The estimation equation (3) represents a spatial lag model
where the spatial autocorrelation is restricted to the dependent
variable (Anselin, 1988; Anselin et al., 2004). The spatial lag
model corrects for nonindependent observations and correlated

9 To prevent the calculated ln(det((I−p*WW) )) in the log-likelihood from
going to infinity, zeros were replaced by 0.001.
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error terms. The constants in each estimated equation represent
observations in 2006 with a previous crop of spring peas. The
six previous-year crops were spring peas, winter peas, spring
canola, winter canola, spring barley, and winter barley.

The system of equations was estimated via maximum like-
lihood (Anselin, 1988). We used GAUSS 8.0 to perform the
estimation.

In estimating Eq. (3), we encountered high multicollinearity
between terrain attributes. It is not entirely surprising that mul-
ticollinearity exists between different terrain attributes because
they are all in some form measuring landscape. For example,
global irradiation and trasp both measure direction and there-
fore have a high correlation, 84% in this case. Because high
multicollinearity inflates the variance and often produces wide
swings in parameter estimates with small changes in the data
(Greene, 2003), it limits our ability to identify the contribu-
tion of specific terrain attributes to yield, protein, or residual
nitrogen. We used the variance inflation factor (VIF) magni-
tudes to identify and remove the most highly collinear terrain
attributes.10 We started with 10 terrain attributes. After account-
ing for high VIFs, defined as a value greater than 40, we were
left with four terrain attributes: plan curvature, profile curvature,
slope, and trasp. These four terrain attributes measure whether
the slope is converging or diverging from the point through
plan curvature, whether the slope is accelerating or decelerat-
ing through profile curvature, steepness of the terrain through
the slope, and direction the slope is facing through trasp.

2.3. Constrained optimization model

For the final objective, we solved a constrained profit-
maximization problem based on the regression parameter es-
timates.11 The optimization model was used to simulate the
economic impact on producers from restricting residual nitro-
gen in the production of HRSW. The economic effects on pro-
ducers from different scenarios were modeled by considering
wheat price, protein premium/discount, nitrogen price, and/or
the acceptable amount of residual nitrogen.

The optimization model is a mixed integer nonlinear pro-
gramming model. The objective function maximizes producer
profit subject to an acceptable amount of residual nitrogen. The

10 We initially had VIF scores higher than 20,000. Resolution of high multi-
collinearity was addressed by sequentially removing the terrain attribute with
the highest VIF score, reestimating the model, and computing new VIF scores.
Five terrain attributes were removed following this procedure. The sixth at-
tribute was removed based on having the highest VIF score and not being
significant in any equation. Factor analysis was also examined as a way to
reduce the number of terrain attribute variables in the model. Factor analysis
resulted in two to four factors being identified. Unfortunately, the factor analy-
sis did not allow for unambiguous identification of terrain attributes or groups
that could guide producer or policymaker decision making.

11 In order to reduce the dimensions of the optimization problem, we only
included the estimated coefficients that were statistically significant at the 10%
level. For purposes of simulation, we have no statistical basis for treating the
other coefficients with any value other than zero.

constrained optimization problem is expressed as

Max E [π ] =
81∑
k

Sharek
∗E
{(

P + (
Prem∗ ÎD or Disc∗ÎP

))
∗Ŷ − C∗Nf − V R

}
, (5)

s.t.

81∑
k

R̂k ≤ U,

where E is the expectations operator; π is profit; Sharek is
the acreage share of the kth terrain attribute; P is the output
price per bushel of HRSW; Ŷ and R̂ are predicted values of
yield and residual nitrogen per acre, respectively, for the kth
terrain attribute from Eq. (3); ÎD and ÎP represent the num-
ber of predicted quarter percents above or below 14% protein,
respectively, for the kth terrain attribute coming from Eq. (3);
Prem and Disc represent positive protein premium and negative
discount per bushel for quarter percents above or below 14%,
respectively; C is the price of nitrogen per pound; Nf is the
amount of applied nitrogen per acre; V R is the per acre incre-
mental cost of variable rate nitrogen application technology;
and U is the maximum acceptable amount of residual nitrogen
per acre.

For the constrained optimization, each terrain attribute was
divided into three categories: low, average, and high. Means and
standard deviations were used to create the three categories.
Assuming normality, the average was specified as the mean
value, the low value was two standard deviations below the
mean, and the high value was two standard deviations above
the mean. Data for this analysis came from a six-year (2001–
2006) field-level experiment in the rolling Palouse hills north
of Pullman, Washington, in a 21 inch rainfall zone. Additional
modeling, experiment description, and data details are reported
in the Appendix.

3. Results

We first report the results of the statistical analysis. We then
present simulation results from the optimization model.

Based on the estimated spatial lag autoregression coefficient
(ρ) in Table 1, we found a statistically significant improvement
by incorporating the higher elevation spatial weight matrix (sig-
nificant at the 1% level for yield and protein and at the 10% level
for residual nitrogen) over the model with no spatial weighting.
Hence, the hypothesis that the higher elevation spatial weights
matrix results in no greater statistical efficiency in parameter
estimation was rejected. Our finding is consistent with Anselin
et al. (2004) who found that incorporating a spatial structure in
corn-nitrogen response models considerably improved model
fit.

Yield, protein, and residual nitrogen equation parameter
estimates from the spatial model incorporating the higher
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Table 1
Estimated HRSW coefficients and standard errors, Eq. (3), with higher elevation included in the spatial weights matrix

Equation parameter Yield Protein Residual nitrogen

Parameter Std. error Parameter Std. error Parameter Std. error

Constant 28.27*** 7.08 11.86*** 0.94 −149.96*** 37.52
Available nitrogen, N 0.07** 0.03 0.01*** 0.004 0.75*** 0.16
N2 −0.0001* 0.00003 −0.00001*** 0.000004 0.0001 0.0002
Plan curvature 2.47 6.39 −1.29 0.85 −17.08 33.89
Profile curvature −3.93 6.59 −0.35 0.88 89.16** 35.29
Slope −0.27 0.54 0.01 0.07 7.30** 2.89
Trasp −5.73 4.33 1.27** 0.58 −7.82 23.00
Spring barley 0.08 1.34 −0.77*** 0.18 20.84*** 7.10
Spring canola 1.89 1.32 −0.47*** 0.18 3.92 7.00
Winter canola 2.26* 1.35 −0.09 0.18 −3.66 7.16
Winter pea 2.95** 1.39 0.17 0.19 −5.54 7.36
Winter barley −0.39 1.41 −0.48*** 0.19 22.34*** 7.46
Plan curvature*N −0.04** 0.02 0.004* 0.003 −0.06 0.10
Profile curvature*N 0.01 0.02 0.002 0.003 −0.39*** 0.11
Slope*N 0.0003 0.002 −0.0002 0.0002 −0.02*** 0.01
Trasp*N 0.0038 0.01 −0.002 0.002 0.02 0.07
Year 2005 22.92*** 1.50 −2.48*** 0.20 30.66*** 7.96
Year 2004 19.67*** 1.44 0.39** 0.19 5.57 7.63
Year 2003 −0.63 1.38 0.27 0.18 19.76*** 7.32
Year 2002 25.70*** 1.44 −0.76*** 0.19 5.24 7.62
Year 2001 12.86*** 1.48 −1.05*** 0.20 36.12*** 7.84
ρ 0.03*** 0.004 0.01*** 0.002 0.003* 0.002

Notes: Significance level: 10% *, 5% **, and 1% ***. 704 observations. Slope is measured in percent. Plan and profile curvature are measured in degrees per meter.

elevation spatial weights matrix are also reported in Table 1.
In both the yield and protein equations, estimated coefficients
on both nitrogen supply variables (N and N2) were found to be
significant (5% level for N and 10% for N2 in yield and 1%
level for both in protein). Thus, both yield and protein content
were found to be dependent on nitrogen supply and exhibited
diminishing marginal productivity, as reflected by the positive
coefficient on the linear terms and the negative coefficient on the
quadratic terms. This finding supports previous research in the
Pacific Northwest by Baker et al. (2004) who found diminish-
ing marginal productivity for HRSW yield.12 For the residual
nitrogen equation, only the coefficient on N was found to be
significant (1% level), indicating a positive linear relationship
between applied nitrogen and residual nitrogen over the range
of our data.

A necessary condition for variable rate application to be a
viable technology is a significant response to the interaction
of at least one terrain attribute and nitrogen in at least one
of the equations. For all three equations, we found at least
one significant interaction term, suggesting that at least one
dimension of terrain attribute significantly affects yield, protein,
and residual nitrogen response to nitrogen supply. For yield
and protein, a statistically significant relationship was found
for the interaction of plan curvature and nitrogen supply—
negative for yield and positive for protein. For the same amount
of nitrogen supply, yield was found to decrease and protein

12 They only considered a linear relationship for protein.

increase as flows diverge from the point.13 For residual nitrogen,
we found statistically significant negative relationships for the
interaction of profile curvature and nitrogen supply and the
interaction of slope and nitrogen supply. For the same amount of
nitrogen supply, residual nitrogen response to nitrogen supply
was found to decrease as the slope increases, indicating that
flatter areas, possibly near a waterway, release larger amounts
of residual nitrogen than areas with greater slope. Residual
nitrogen response from nitrogen supply was found to decrease
at higher profile curve values or areas with decelerating flows.
In none of the response equations was a statistically significant
relation found for the interaction of trasp and nitrogen supply.
As a consequence, we did not include trasp in the optimization
model with which we conducted the economic simulations.
This reduced the number of terrain attribute zones considered
from 81 (34) to 27 (33) and thus reduced the dimensions of the
optimization problem.

Other factors also contributed significantly to yield, protein,
and residual nitrogen, as evident from Table 1. The constant,
which represents spring peas in year 2006, was significant and
positive in the yield and protein equation and significant and
negative in the residual nitrogen equation. Year control vari-
ables significantly impacted all three dependent variables. In
the yield and protein equations, four of the five year controls

13 The estimated inverse relation between yield and protein is likely due to
water. Less available water results in lower yields that can leave more nitrogen
available to increase protein content. More available water can improve yields
but leave less nitrogen for protein.
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Table 2
Comparative statics of an extra pound of applied nitrogen for alternative terrain
attributes

Terrain attribute Equation

Plan
curvature

Profile
curvature

Slope Yield
(bushels)

Protein
(percent)

Residual
nitrogen
(pounds)

Low Low Low 0.087 0.009 0.988
Low Average Low 0.090 0.010 0.759
Low High Low 0.093 0.011 0.529
Average Low Low 0.068 0.011 0.962
Average Average Low 0.072 0.012 0.733
Average High Low 0.075 0.013 0.503
High Low Low 0.050 0.013 0.936
High Average Low 0.053 0.014 0.707
High High Low 0.056 0.015 0.477
Low Low Average 0.089 0.008 0.853
Low Average Average 0.092 0.009 0.623
Low High Average 0.095 0.011 0.394
Average Low Average 0.070 0.010 0.827
Average Average Average 0.074 0.011 0.597
Average High Average 0.077 0.013 0.368
High Low Average 0.052 0.012 0.801
High Average Average 0.055 0.013 0.571
High High Average 0.058 0.015 0.342
Low Low High 0.091 0.007 0.718
Low Average High 0.094 0.009 0.488
Low High High 0.097 0.010 0.258
Average Low High 0.072 0.009 0.692
Average Average High 0.075 0.011 0.462
Average High High 0.079 0.012 0.232
High Low High 0.054 0.011 0.666
High Average High 0.057 0.013 0.436
High High High 0.060 0.014 0.206

Notes: Low and high represent values of two standard deviations to the left
and right of the mean, respectively. Average indicates the mean value. Slope
is measured in percent. Plan and profile curvature are measured in degrees per
meter. All other variables are set at their mean values.

were significant; for residual nitrogen, three of the five year
controls were significant. Several previous crops were also sig-
nificant in all three response equations. Of the five previous crop
controls, two were significant in the yield and residual nitrogen
equations and three in the protein equation.

For a robustness check, we compared results from the higher
points spatial model to those obtained from the OLS model.
The magnitudes of most estimated parameters were similar
in both models. Only one parameter estimate changed sign.
The primary differences affected a few parameter estimates on
the year dummy variables in the residual nitrogen equation.
However, the most notable difference was that the parameter
on N2 in the yield equation was insignificant in the OLS model
that implies constant marginal productivity over the range of
data. Thus, drawing inferences about yield response to nitrogen
supply based on our test statistics from OLS could have been
seriously misleading.

Table 2 presents the comparative statics of response for all
three equations due to the interaction of nitrogen supply and
terrain attributes found to be significant in at least one equation.

We analyzed three different values of plan curvature, profile
curvature, and slope—low, average, and high (as previously
defined). All other variables were set at their mean values.

The yield response to a one-pound increase in nitrogen supply
ranged from a low of 0.050 to a high of 0.097 bushel increase
depending on terrain attributes. Protein response to a one-pound
increase in nitrogen supply ranged from a low of 0.007 to a high
of 0.015 percentage point increase depending on the terrain at-
tribute. The effect of terrain attribute on residual nitrogen re-
sponse to a one-pound increase in nitrogen supply ranged from
a low of 0.206 to a high of 0.988 pound increase. Hence, terrain
attributes were estimated to have the biggest impact on resid-
ual nitrogen that varied by 379% from the lowest value. This
impact compares to the protein response that varied by 110%
from the low value and to yield response that varied by 95%.

For yield and residual nitrogen, points with diverging flows
(high plan curvature) decreased response to nitrogen over points
with converging flows (low plan curvature). The opposite effect
was found for protein. Points with decelerating slope (high
profile curvature) increased yield and protein over points with
accelerating slope (low profile curvature).14 The opposite effect
was found for residual nitrogen. For yield, high slope increased
response to nitrogen supply relative to low slope. The opposite
effect was found for protein and residual nitrogen, with the
difference being greatest for residual nitrogen. Differences in
plan curvature had the greatest impact on yield and protein
response, and differences in profile curvature had the greatest
impact on residual nitrogen response to an increase in nitrogen
supply. Because responses were all positive, these comparative
static results also make clear that, at mean available nitrogen
levels, additional nitrogen increases yield, protein, and residual
nitrogen for all terrain attributes.

For the final objective, we used the constrained optimiza-
tion model to examine the impact on producers from restricting
residual nitrogen under two different application methods—
uniform and variable rate. Three levels of maximum allow-
able residual nitrogen from applied nitrogen were considered—
maximum of 0 pounds per acre, maximum of 60 pounds per
acre, and unconstrained residual nitrogen profit-maximizing
level. In order to assess the sensitivity of economic returns,
four separate price scenarios were examined for each applica-
tion method. Three of the scenarios were the highest, average,
and lowest ratio of HRSW grain price and of protein price rel-
ative to nitrogen price observed during the experimental trial
period (2001–2006).15 The fourth scenario used current (Spring
2014) price ratios.

14 The opposing qualitative effects of plan curvature on yield and protein could
be explained by differences in their response to available water. However, the
common qualitative effect of profile curvature cannot be attributed to water
availability.

15 The relative change in fertilizer price from low to high was much greater
than the change in grain price and less than the protein premium and discount.
Nitrogen increased 256 percent in price, from a low of $0.25/lb to a high of
$0.89/lb, whereas grain price increased only 36% (from $4.00 to $5.44/bushel).
The protein premium increased 1,150% (from $0.005 to $0.0625/quarter
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Table 3
Per acre impact of regulating residual nitrogen from applied nitrogena

Grain/nitrogen and
protein/nitrogen price
ratios

Maximum allowable
additional residual
nitrogen

Applied nitrogen Profit Additional residual nitrogen

Uniform Variable Difference Uniform Variable Difference Uniform Variable Difference

Average Unconstrained 147.20 133.86 13.34 116.47 103.49 12.98 112.87 82.12 30.75
60b 73.13 79.93 −6.80 115.35 102.73 12.62 55.43 48.52 6.91

High Unconstrainedc 269.73 230.41 39.32 160.90 146.65 14.25 210.79 144.02 66.77
60 79.10 98.48 −19.38 135.00 123.92 11.08 60.00 60.00 0.00

Current Unconstrainedc 203.89 230.41 −26.52 206.13 192.27 13.86 157.73 144.02 13.71
60b 73.13 79.93 −6.80 188.64 176.69 11.95 55.43 48.52 6.91

Notes:
aNitrogen units are in pounds per acre; profit is in dollars per acre. Average and High represent mean and highest price ratios during the study period, and Current
represents spring 2014 price ratios. When the maximum allowable additional residual nitrogen was constrained to zero and also at low price ratios, no nitrogen was
applied.
bThe residual nitrogen constraint was not binding in either of these scenarios because of the stepped protein premium/discount scales. The constraints were binding
when the protein premiums and discounts were ignored. Despite very different prices, the price ratios were sufficiently similar to induce the same levels of applied
nitrogen in both scenarios.
cDespite different prices, the same level of nitrogen was applied with variable rate application in both scenarios.

Results from scenarios with applied nitrogen are reported
in Table 3 for both application methods. Results are presented
on a per-acre basis. In addition to the four scenarios in which
additional residual nitrogen was constrained to zero, no nitro-
gen was applied for the other two scenarios with the low price
ratio because the marginal cost was greater than the marginal
benefit. Consequently, nitrogen was applied in only 6 of the
12 examined scenarios with either application method. Their
results are presented in Table 3. When additional residual ni-
trogen was constrained to 60 pounds per acre, we found local
maxima (i.e., nonbinding constraints) for uniform and variable
application with both average and current price ratios. The lo-
cal maxima were due to the stepped protein premium/discount
scales.16 Further, despite very different nominal prices that re-
sulted in substantial differences in profit, the average and current
price ratios were sufficiently similar to induce identical levels
of applied nitrogen in both scenarios. An identical amount of
nitrogen was also applied by variable application in the uncon-
strained profit maximization scenarios with high and current
price ratios.

In all six scenarios with positive applied nitrogen, producer
profit was greater under uniform application than under variable
rate application. In each of these cases, the benefits of variable
rate application were less than the cost of its application. This
finding indicates that there was not enough spatial variability
response to nitrogen (even with the statistically significant in-
teraction of the plan curvature terrain attribute and nitrogen in
yield and protein response equations) for the economic benefits
of variable rate application to cover the additional costs.

percent), and the protein discount increased 370% (from $0.025 to
$0.1175/quarter percent).

16 To verify that the local maximum solutions were due to the stepped nature
of this function, we set the protein premium and discount to zero and resolved
the optimization model. The constraints were binding in both cases.

Except for the unconstrained profit maximization scenarios
with average and high price ratios, the variable rate application
also used more nitrogen than did uniform application. However,
variable rate application reduced residual nitrogen when com-
pared to uniform rate application in five of the six scenarios in
which nitrogen was applied, and it was the same in the other
scenario. Thus, we find evidence that variable rate application
provides positive environmental benefits although not positive
producer economic benefits.

Constraining the amount of residual nitrogen generally re-
duced producer profit, as it logically must if the constraint is
binding. The effects differed noticeably between low, average,
high, and current price ratios but were similar for both appli-
cation methods. When additional residual nitrogen was con-
strained to 60 pounds per acre, profit was reduced by $23–$26
per acre (for a 16% reduction) under the high price ratio, $16–
$17 per acre (8%) under current prices, and $1 per acre (1%)
under average prices.

The impact on per-acre profit and residual nitrogen of lim-
iting additional residual nitrogen from the profit maximization
level to zero is reported in Table 4. To gauge the impact of prices,
we consider four distinct price cases over the data period: high
grain/nitrogen price ratio and protein/nitrogen price ratio, high
grain/nitrogen price ratio with average protein/nitrogen price ra-
tio, high protein/nitrogen price ratio with average grain/nitrogen
price ratio, and average grain/nitrogen price ratio and pro-
tein/nitrogen price ratio. When any of these price ratios is high,
there is a substantial impact on both profit and residual nitro-
gen from the full restriction on residual nitrogen. For example,
with high grain/nitrogen and high protein/nitrogen price ratios,
limiting residual nitrogen from the profit-maximization level
to zero resulted in a profit reduction of $42–44 per acre and
residual nitrogen reduction of 144–211 pounds per acre. The
reduction in profit from full restriction was less with only the
grain/nitrogen or protein/nitrogen price ratio at the high value,
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Table 4
Per acre impacts of restricting applied nitrogen to zero

Price ratio

Application method Measure High grain/nitrogen and
high protein/nitrogen

High grain/nitrogen and
average protein/nitrogen

High protein/nitrogen and
average grain/nitrogen

Average grain/nitrogen
and average
protein/nitrogen

Uniform Profit −44.27 −26.38 −32.79 −5.56
Residual nitrogen −210.79 −182.97 −182.97 −112.87

Variable Profit −42.45 −26.80 −31.74 −5.01
Residual nitrogen −144.02 −143.61 −143.61 −82.12

Notes: Profit is in dollars per acre. Residual nitrogen is in pounds per acre.

and the reduction in residual nitrogen was less in these cases
under uniform application. In each case, the reduction in profit
was similar for both application methods. There was more vari-
ability in residual nitrogen reduction, and the greater reduction
occurred with uniform application.

With all price ratios at their averages, profit dropped by $5–$6
and residual nitrogen by 82–112 pounds per acre. The drop was
greater for residual nitrogen with uniform application. Thus,
imposing full restrictions on residual nitrogen had little effect
on profit at average prices but substantially reduced residual
nitrogen.

As already noted, no nitrogen was applied when both output
prices were low relative to nitrogen price. In addition, when
one output price was low relative to nitrogen price and the other
output price was average relative to nitrogen price, no nitrogen
was applied under unconstrained profit maximization. These
results were the same for both application methods. Thus, there
was no effect on residual nitrogen or profit in any of these sce-
narios. Consequently, low price ratios during the experimental
period would have done as much for the environment as quantity
restrictions on residual nitrogen.

4. Conclusions

Using spatial econometric methods, we have analyzed the
impact of nitrogen fertilizer supply by terrain attribute on the
yield and protein content of HRSW grown in Eastern Washing-
ton as well as the impact on residual nitrogen. We also exam-
ined potential impacts on producer profit from requirements to
reduce residual nitrogen and from using variable rate fertilizer
application methods. Understanding the environmental connec-
tions of agricultural production helps to identify market condi-
tions and technology that policymakers can use to design poli-
cies to minimize the economic cost of reducing environmental
degradation.

We found that including a three-dimensional (longitude, lat-
itude, and elevation), spatial weights matrix in the econometric
estimation improved statistical efficiency in parameter estima-
tion over standard econometric estimation. Spatial economet-
ric methods provided better model fit by accounting for soil
and topographic spatial dependence, thereby improving model

accuracy and, more importantly, facilitating more precise eco-
nomic inference.

With the spatial model controlling for local soil and topo-
graphic spatial dependence, we identified statistically signifi-
cant impacts of nitrogen supply by terrain attribute on yield,
protein, and residual nitrogen. We found that yield response
to nitrogen supply was the greatest with high slope and high
profile curvature (i.e., accelerating slope) and small plan cur-
vature (converging flow). We also found that residual nitrogen
response to nitrogen supply was greatest under the opposite
extreme in slope, plan curvature, and profile curvature. Conse-
quently, to reduce residual nitrogen and have the least impact
on yield, greater attention should be paid to reducing nitrogen
supply in the flatter areas. In these areas, nitrogen has a higher
probability of becoming pollution since the only way to exit the
field is into plants, surface or ground water, or the atmosphere
and not by passing the nitrogen to lower elevations.

The economic effect on producer profit from restricting resid-
ual nitrogen was examined by simulating 12 price scenarios
with a constrained optimization, mixed integer nonlinear pro-
gramming model. The results of these simulations suggest ways
that policymakers might induce producers to reduce residual
nitrogen. If required to minimize residual nitrogen, producers
could lose up to $44 per acre at high grain/nitrogen and high pro-
tein/nitrogen price ratios but only $5–6 per acre at average price
ratios. Yet, the reduction of residual nitrogen would be more
than half as great at average price ratios as at high price ratios.
Thus, inducement to reduce residual nitrogen and consequently
applied nitrogen could be accomplished with trivial cost to the
farmer at average grain and protein relative to nitrogen price
ratios, but the same standard could impose substantial costs at
high price ratios. The economic burden of environmental policy
associated with nitrogen fertilizer could thus be greatly reduced
by implementing a price-dependent partial restriction policy.

Despite the significant effect of terrain attributes on yield
and protein content of wheat and on residual nitrogen, uniform
application of nitrogen was found to economically outperform
variable rate application because of the higher cost of vari-
able rate application. However, variable rate application pro-
vided positive environmental benefits over uniform application
by leaving less residual nitrogen. Nevertheless, while incen-
tivizing producers to adopt variable rate application is a goal
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policymakers concerned with environmental quality might con-
sider, it does not exhibit the same impact potential as a price-
dependent partial restriction policy.
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