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NUTRIENT REGULATION OF ORGANIC MATTER DECOMPOSITION

IN A TROPICAL RAIN FOREST

CORY C. CLEVELAND,1,3 SASHA C. REED,2 AND ALAN R. TOWNSEND

1Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder, Colorado 80303 USA
2Department of Ecology and Evolutionary Biology, and INSTAAR, University of Colorado, Boulder, Colorado, USA

Abstract. Terrestrial biosphere–atmosphere CO2 exchange is dominated by tropical
forests, so understanding how nutrient availability affects carbon (C) decomposition in
these ecosystems is central to predicting the global C cycle’s response to environmental
change. In tropical rain forests, phosphorus (P) limitation of primary production and de-
composition is believed to be widespread, but direct evidence is rare. We assessed the
effects of nitrogen (N) and P fertilization on litter-layer organic matter decomposition in
two neighboring tropical rain forests in southwest Costa Rica that are similar in most ways,
but that differ in soil P availability. The sites contain 100–200 tree species per hectare and
between species foliar nutrient content is variable. To control for this heterogeneity, we
decomposed leaves collected from a widespread neotropical species, Brosimum utile. Mass
loss during decomposition was rapid in both forests, with B. utile leaves losing .80% of
their initial mass in ,300 days. High organic matter solubility throughout decomposition
combined with high rainfall support a model of litter-layer decomposition in these rain
forests in which rapid mass loss in the litter layer is dominated by leaching of dissolved
organic matter (DOM) rather than direct CO2 mineralization. While P fertilization did not
significantly affect mass loss in the litter layer, it did stimulate P immobilization in de-
composing material, leading to increased P content and a lower C:P ratio in soluble DOM.
In turn, increased P content of leached DOM stimulated significant increases in microbial
mineralization of DOM in P-fertilized soil. These results show that, while nutrients may
not affect mass loss during decomposition in nutrient-poor, wet ecosystems, they may
ultimately regulate CO2 losses (and hence C storage) by limiting microbial mineralization
of DOM leached from the litter layer to soil.

Key words: Brosimum utile; decomposition; dissolved organic carbon (DOC); dissolved organic
matter (DOM); fertilization; leaching; nitrogen; nutrient limitation; phosphorus; tropical rain forest.

INTRODUCTION

The amount of carbon (C) that is stored in any eco-

system represents a balance between net primary pro-

ductivity (NPP) and C loss via organic matter decom-

position, and therefore accurate predictions about C

cycle responses to global change require an understand-

ing of the factors that regulate decomposition. Because

tropical forests contain up to 40% of terrestrial C bio-

mass and account for one-third of annual biosphere–

atmosphere CO2 exchange (Field et al. 1998, Phillips

et al. 1998), even small changes in decomposition rates

could profoundly alter atmospheric composition and

climate at a global scale (Shukla et al. 1990, Townsend

et al. 1992). Thus, identifying the factors that regulate

organic matter decomposition in these highly produc-

tive, C-rich ecosystems is critical to our understanding

of the current and future global C balance.

Conceptual and analytical models developed from a

long history of research suggest three main controls on

decomposition in terrestrial ecosystems: (1) the quality

Manuscript received 1 April 2005; revised 15 June 2005; ac-
cepted 1 August 2005. Corresponding Editor: J. B. Yavitt.

3 E-mail: Cory.Cleveland@colorado.edu

and quantity of the organic matter being decomposed,

(2) the physical environment (e.g., temperature, pre-

cipitation, soil type), and more recently (3) the nature

and identity of the soil organisms decomposing the

organic material (Meentemeyer 1978, Swift et al. 1979,

Chapin et al. 2002). One factor, substrate quality, de-

scribes the decomposability of organic matter based on

its chemical composition. However, while C chemistry

partly influences substrate quality, the nutrient content

and carbon-to-nutrient stoichiometry of decomposing

material are equally important determinants (Melillo et

al. 1982). For example, ‘‘low quality’’ organic material

is relatively lignin rich and nutrient poor, and decom-

poses slowly (Meentemeyer 1978). In contrast, ‘‘high

quality’’ organic matter may have similar C chemistry,

but higher relative nutrient availability may fuel more

rapid microbial decomposition of C-rich organic ma-

terial (Melillo et al. 1982, Parton et al. 1994). Thus,

the element content of organic material strongly influ-

ences rates of decomposition; if the nutrient demand

of microbes decomposing nutrient-poor organic matter

outpaces mineralization, then nutrient limitation may

constrain decomposition (Vitousek and Howarth 1991).

Nitrogen (N) commonly limits decomposition and

other ecosystem processes in temperate ecosystems
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(Aber et al. 1991, Vitousek and Howarth 1991). How-

ever, many tropical rain forests lie on highly weathered

soils that are relatively N rich (Martinelli et al. 1999),

but that are depleted in ‘‘rock-derived’’ essential nu-

trients (Walker and Syers 1976, Sanchez et al. 1982).

As a result, some evidence suggests that phosphorus

(P) limits ecosystem processes in tropical rain forests

more often than N (Uehara and Gilman 1981, Vitousek

1984, Vitousek and Sanford 1986, Herbert and Fownes

1995). For example, on a soil chronosequence in Ha-

waii, Hobbie and Vitousek (2000) found that where P

limits annual NPP, elevated P (in litter) and elevated

N 1 P (in soil) increased decomposition rates. How-

ever, despite the widespread belief that P availability

limits NPP in tropical rain forests, direct experimental

evidence of P limitation is rare, and the nature and

extent of nutrient limitation of decomposition in trop-

ical ecosystems is poorly understood.

The objective of this study was to investigate the

effects of nutrient availability on litter layer organic

matter decomposition in two adjacent tropical rain for-

ests that differ in soil P availability. In addition, while

estimates of decomposition are commonly reported as

a single empirical constant representing mass loss rate

(i.e., k in the expression e2kt; Olson 1963), decompo-

sition includes two distinct mass loss vectors: CO2min-

eralization in the litter layer and leaching (e.g., Yavitt

and Fahey 1986, Currie and Aber 1997). The first of

these, mineralization in the litter layer, represents a

biologically mediated, chemical transformation of or-

ganic matter to CO2. In contrast, leaching does not

transform organic material per se, but merely redis-

tributes C from the litter layer to the soil. Thus, while

‘‘mass loss’’ is typically a single measured variable, it

integrates two fundamentally different processes that

may vary in their response to nutrients.

For example, in dry systems (where leaching is a

relatively small mass loss vector) organic matter mass

loss rates are most likely to be nutrient limited at the

site of CO2 mineralization (i.e., in the litter layer). Al-

ternatively, in wet systems (where leaching is a more

dominant mass loss vector) nutrient availability may

not limit mass loss rates themselves, but may ultimately

limit microbial mineralization of transported dissolved

organic matter (DOM) at the site of DOM delivery (i.e.,

in the soil). Thus, in addition to investigating the effects

of nutrient availability on organic matter mass loss, we

were equally interested in the effects of nutrient avail-

ability on the microbial mineralization of DOM leached

from litter to soil. While most previous decomposition

studies have not explicitly considered the effects of

nutrient availability on these two fundamentally dif-

ferent mechanisms, such a distinction is critical to un-

derstanding how low nutrient availability regulates C

cycling and storage in wet, productive ecosystems.

MATERIALS AND METHODS

Site description

Our study sites were two adjacent tropical rain for-

ests on the Osa Peninsula, southwest Costa Rica. The

two forests, located on the north end of the Osa Pen-

insula in the Golfo Dulce Forest Reserve (88439 N,

838379 W), are several hundred meters apart, and con-

tain diverse primary lowland tropical rain forest. The

sites are similar in most ways, including mean annual

temperature (MAT), mean annual precipitation (MAP),

elevation, and species composition (Appendix A).

However, the sites are characterized by distinct soil

orders and categories of parent material. One site (ul-

tisol forest, hereafter UF) has ultisols that developed

on a steeply dissected landscape in the Osa basaltic

complex (Bern et al. 2005). The other site (alluvial

forest, hereafter AF) occupies an ancient floodplain,

and contains less weathered, more organic matter rich

and nutrient-rich mollisols that developed from a com-

plex mixture of Quaternary alluvium dominated by Osa

basalt deposited within the last 20 000 years (Bern et

al. 2005).

Experimental design

To test the effects of nutrient availability on decom-

position, we fertilized plots with N and P in a full

factorial design (10 replicates per treatment, per site).

Plots were randomly selected to receive treatments, and

were fertilized twice per year (in January during the

dry season and in June during the wet season) by hand

broadcasting N (150 kg N ha21 yr21 as NH4NO3), P

(150 kg P ha21 yr21 as KH2PO4), or N and P in com-

bination (150 kg ha21 yr21 N and P). Ten control plots

at each site were not fertilized. Fertilized plots received

N, P, or N 1 P at a high rate and at a 1:1 ratio to

account for the high P sorption capacity of the ultisol

soil (Oberson et al. 1997, Townsend et al. 2002a), and

to ensure that all possible nutrient constraints by N and

P were removed (e.g., Hobbie and Vitousek 2000). Fer-

tilization commenced in February 2001, and plots re-

ceived one full year of fertilizer before the decompo-

sition experiment began.

Designing an experiment to accurately assess the ef-

fects of nutrient availability on organic matter decom-

position in a site with 100–200 species per hectare

(e.g., Kappelle et al. 2003) represents a serious chal-

lenge. For example, foliar and litter nutrient contents

of tropical forest tree species vary considerably, both

between and within species (A. Townsend and C.

Cleveland, unpublished manuscript). Thus, a decom-

position experiment with mixed litter (that occupies a

range of nutrient contents) precludes a well-controlled

test of the effect of nutrient availability on decompo-

sition. To control for foliar nutrients, we decomposed

organic material from a single widespread neotropical

species, Brosimum utile. While no single species could

accurately represent the decomposition dynamics of an

entire forest community (especially in a highly diverse

tropical rain forest) our goal was to select a species

that best represented an ‘‘average’’ species. B. utile is

the most common tree species on the Osa Peninsula,

is present in tropical rain forests in both Central and
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South America, and has intermediate concentrations of

most major nutrients (relative to several other common

canopy species in neotropical forests; A. Townsend and

C. Cleveland, unpublished manuscript).

Our experimental design included a test of the effects

of litter layer organic matter nutrient content on de-

composition rates. Consequently, we constructed our

decomposition bags using foliage sampled from single

B. utile trees growing at AF (ALIT) and UF (ULTLIT)

sites; (Appendix B). Decomposition studies are often

conducted using recently senesced leaves collected

from traps (e.g., Scowcroft et al. 2000). However, the

high tree diversity at our forest sites leads to a wide

range of species represented in litter traps, litter com-

position varies considerably between traps, and within-

species litter nutrient content varies considerably at

short time scales (i.e., monthly; A. Townsend and C.

Cleveland, unpublished manuscript). Since our goal

was to compare soil nutrient (UF vs. AF), organic mat-

ter nutrient (ALIT vs. ULTLIT), and nutrient fertiliza-

tion effects on decomposition, we required large

amounts of chemically homogeneous litter. To control

for the nutrient content of the organic matter used in

the decomposition experiment, we sampled individual

B. utile trees in January 2001, (i.e., the dry season,

when annual litterfall reaches a maximum; C. Cleve-

land and A. Townsend, unpublished manuscript) by

climbing a B. utile tree at both sites, removing limbs

from various heights and positions throughout the can-

opy, and mixing collected foliage. While in some ways

this approach may have resulted in unrepresentative

‘‘litter’’ (i.e., organic material that may not have un-

dergone senescence or nutrient resorption), analyses of

both B. utile foliage and litter collected in litter traps

at the time of harvest suggested that the C, N, and P

content of foliage closely mirrored that of freshly fallen

B. utile litter. This approach also provided large quan-

tities of chemically homogeneous material necessary

to separate the effects of soil vs. litter nutrients, while

still allowing use of a material that was similar to fresh-

ly fallen litter.

Following collection, foliage was dried at 508C and

;7 g were sealed in 15 3 15 cm litterbags constructed

with 1 mm mesh fiberglass screen. In April of 2002

(the end of the dry season, and when forest floor litter

mass is highest; C. Cleveland and A. Townsend, un-

published manuscript), a total of 1120 decomposition

bags were placed on top of the litter layer in plots at

UF and AF sites. Bags were separated on strands by

at least 15 cm, and were arranged in plots to form an

‘‘3,’’ with decomposition bag strands composed of

ULTLIT and ALIT, respectively, intersecting at their

midpoints. Thus, all plots contained two strands of sev-

en bags; one strand contained ULTLIT, and one strand

contained ALIT. Thirty additional bags were also con-

structed, transported to the field, immediately returned

to the laboratory, dried at 708C, and weighed to de-

termine 508 to 708C conversion factors and the effects

of handling and transport on litterbag mass. Bags were

harvested at 30, 60, 90, 150, 180, 240, and 300 d after

being placed in the field and analyzed for mass loss

and carbon and nutrient chemistry.

While soil C and N content are similar at AF and

UF, the soils at the two sites are markedly different in

both total P (P , 0.001) and labile P content (P ,

0.01; Appendix A). The differences in P availability

between UF and AF provided an opportunity to inves-

tigate the effects of in situ soil P availability on organic

matter decomposition in a diverse mainland tropical

rain forest (Appendix A). Thus, the effects of in situ

soil P availability on decomposition were assessed by

decomposing common organic substrates in control

plots at both sites (Appendix C).

Next, foliar P concentrations in B. utile were sig-

nificantly higher (50%; P , 0.001) at AF than UF sites,

reflecting the higher soil P availability in the alluvial

soil (Appendix B). The difference in foliar P content

between B. utile individuals growing at AF and UF

sites provided an opportunity to investigate the effect

of organic matter P content on decomposition. To test

the effects of organic matter P availability on decom-

position, we performed a reciprocal transplant of B.

utile foliage grown on alluvial soil (ALIT) to UF, and

B. utile foliage grown on ultisol soil (ULTLIT) to AF

(Appendix C). Finally, we assessed the effects of nu-

trient fertilization on decomposition by decomposing

both ALIT and ULTLIT in fertilized and control plots

at both AF and UF. Thus, our experimental design in-

cluded a full-factorial (soil nutrient 3 litter nutrient 3

soil fertilization treatment) organic matter decompo-

sition experiment (Appendix C).

Analytical methods: soil

Soils for chemical and physical analyses were sam-

pled at AF and UF sites from plots (control, N, P, N

1 P) using a hand soil corer (6 3 10 cm). Within 72

h of collection, soils were returned to the laboratory

at the University of Colorado and coarsely sieved (4

mm) to remove plant material. 50-g subsamples were

removed from each soil and air dried for physical and

chemical analyses. Fresh soil samples were stored at

48C until analysis, and incubation experiments were

initiated within 96 h of soil sampling to avoid artifacts

incurred during long-term storage.

We measured pH on air-dried soils using a soil : de-

ionized water paste (1:1). Soil bulk density at each site

was determined using an excavation method (Parent

and Caron 1993). Soils for organic C and N analyses

were ground to ;0.5 mm and analyzed using a Carlo

Erba combustion–reduction elemental analyzer (CE

Elantech, Lakewood, New Jersey, USA). Extractable

N (NH4
1/NO3

2) was determined in a 2 mol/L KCl so-

lution (24 h extraction), and labile P was determined

by using the first two steps of the modified Hedley

fractionation (Tiessen and Moir 1993). NH4
1, NO3

2,

and PO4
32 in extracts were analyzed colorimetrically
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on an Alpkem autoanalyzer (OI Analytical, College

Station, Texas, USA).

Analytical methods: organic matter

Following collection, decomposition bags were dried

in a hothouse in the field and returned to the laboratory

at the University of Colorado. After removing adhered

debris with a dry brush, bags were dried at 708C and

reweighed to determine mass loss. Material from each

bag was ground to a fine powder with a mortar and

pestle (;0.5 mm) and analyzed for litter C and N con-

tent using a Carlo Erba EA 1110 elemental analyzer.

Litter P was assessed using a sulfuric acid/hydrogen

peroxide digest and a colorimetric P analysis on an

Alpkem autoanalyzer using the ammonium molybdate

ascorbic acid method (Kuo 1996). Calcium, magne-

sium, and potassium content of organic material were

analyzed using an ARL 3410 Inductively Coupled Plas-

ma Atomic Emission Spectrophotometer (ICP-AES;

Thermo Electron, Waltham, Massachusetts, USA).

Organic matter solubility

To assess the potential magnitude of litter layer mass

loss via leaching through time, we determined the sol-

ubility of decomposing organic matter using a plant

fiber analyzer (Ankom Technology, Macedon, New

York, USA). Briefly, subsamples from bags harvested

at each time point were ground to a fine powder, sealed

in filter bags, and digested in a dilute neutral detergent

at 1008C. Following digestion, filter bags were re-

weighed to determine soluble cell mass loss (Van Soest

and Wine 1968, Hobbie and Gough 2004). The C:P

ratios of leached dissolved organic matter (DOM) were

determined using the same procedure, but using a hot

water extraction instead of the neutral detergent. The

C content of hot water extractable DOM was deter-

mined using a Shimadzu TOC 5050A total organic car-

bon analyzer (Shimadzu Corporation, Kyoto, Japan),

and inorganic P in leached DOM using an Alpkem

autoanalyzer.

Fertilization effects on DOM decomposition

To determine the effect of nutrient fertilization on

litter-leached DOM mineralization in soil, we con-

ducted an incubation experiment using UF soil and

soluble C leached from UF foliage that was used to

construct litterbags. 100 g of dry organic material were

extracted in 1 L of deionized water for 24 h at 228C.

Following extraction, leachate was filtered to 0.45 mm,

and C concentration of the leachate was measured using

a Shimadzu TOC 5050A total organic carbon analyzer.

Soil samples (15 g dry mass) collected from control,

N, P, and N 1 P plots (N 5 10) at UF were placed in

1-L glass jars, and given 5 mL (i.e., an amount to bring

soil to 50% of water holding capacity) of either dis-

solved organic carbon (DOC; 422 mg DOC-C/g soil)

or water (as control). Following treatment additions,

jars were capped with lids equipped with rubber septa

for gas sampling, and sampled for CO2 at 3, 6, 9, 12,

15, 24, 32, and 48 h using glass gas-tight syringes. CO2

concentration was determined immediately using a Shi-

madzu GC-14 gas chromatograph equipped with a ther-

mal conductivity detector.

Data analysis

All data were tested for homoscedasticity (Levene’s

test for equal variances), normality, and skewedness

(SPSS, Chicago, Illinois, USA). When data were het-

erogeneous, they were ln-transformed prior to analysis.

Differences in soil nutrients (control plots) and initial

foliar nutrients between UF and AF were tested with

one-way ANOVA. Annual decomposition rates (k val-

ues) were determined for each litterbag strand (i.e., by

site, litter type). Briefly, mass loss data were analyzed

using the model of Olson (1963), y 5 e2kt, where y is

the fraction of mass remaining at a specific time t

(years). Hence, the basis for our analyses (k) is the

negative exponential decay constant. By using this ap-

proach, we were able to use all data from all plots to

calculate mean decomposition rates for each litterbag

strand (N 5 160), and thus remove the effects of lit-

terbag harvest time from our analyses (Potvin et al.

1990). This strategy produced 10 independent replicate

estimates of decay for each treatment (litter 3 soil 3

fertilization treatment). Differences between decay

constants were then analyzed using ANOVA with site,

litter type, and fertilization treatment as factors. AN-

OVA was also used to determine the significance of

the three main factors (soil type, litter type, and fer-

tilization) and their interactions on litter decomposition

rates (k). To determine the effect of initial litter and

soil nutrients and their combined effects on decom-

position, we performed ANOVA using soil type and

litter type as factors, and using k values obtained in

control plots. We also used ANOVA to assess the effect

of nutrient fertilization on litter nutrient dynamics, with

treatment and harvest date as the main factors. Differ-

ences in organic matter solubility through time and

respiration rates following DOM additions in the in-

cubation experiment were tested with one-way ANO-

VA.

RESULTS

Fertilization effects on soil chemistry

Phosphorus fertilization caused significant increases

in soil labile P pools at both AF and UF sites. After

one year of fertilization, UF plots receiving P or N 1

P had significantly (P , 0.05) higher labile P (67.7 6

13.8 and 107.4 6 33.5 mg/g soil [dry mass], respec-

tively) than control and N-fertilized plots (19.4 6 5.3

and 25.5 6 2.7 mg/g soil, respectively). At AF, plots

receiving P or N 1 P also had significantly (P , 0.05)

higher labile P (116.8 6 40.0 and 146.2 6 34.4 mg/g

soil, respectively) than control and N plots (25.1 6 7.6

and 33.4 6 1.7 mg/g soil, respectively). However, after
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TABLE 1. Mean decay rates (k) for Brosimum utile foliage
decomposed in the ultisol forest (UF) or alluvial forest (AF)
control plots.

Site

ULTLIT

k r2

ALIT

k r2

UF 22.82 0.76 22.51 0.84
AF 24.40 0.87 22.95 0.84

Notes: Decay rate values (k) represent the mean of values
calculated from an exponential decay model in control plots
over a period of 300 days, and regression coefficient values
(r2) represent the mean of r2 values of corresponding litterbag
strands. Key to abbreviations: ULTLIT, B. utile foliage grown
on ultisol soil; ALIT, B. utile foliage grown on alluvial soil.

FIG. 1. Effects of nutrient fertilization on loss of organic matter mass shown as percentage of mass remaining (mean 6
SE). Treatment types are represented by solid circles (control), open circles (N added), solid squares (P added), and open
squares (N 1 P added).

one year of N fertilization, extractable N pools did not

differ significantly between treatments at either UF (P

5 0.19) or AF (P 5 0.27).

Fertilization with N or P alone did not significantly

affect soil pH values relative to control plots. However,

fertilization with N 1 P caused a significant decrease

in soil pH in both soil types (Tukey’s b, P , 0.01). At

the end of the decomposition experiment, soil pH val-

ues at UF were 4.85 6 0.03, 4.75 6 0.02, 4.69 6 0.12,

and 4.48 6 0.05 (mean 6 SE) in the control, N, P, and

N 1 P plots, respectively. At AF, soil pH values were

5.58 6 0.09, 5.39 6 0.31, 5.70 6 0.18, and 5.05 6

0.38 in the control, N, P, and N 1 P plots, respectively.

Organic matter mass loss

Mass loss rates in decomposition bags at UF and AF

sites were extremely rapid. At both sites, most samples

lost .50% of their mass in ,120 d, and .90% of their

mass after 300 d in the field. While mass loss was rapid

in all samples, decomposition rates (i.e., k values) did

vary significantly by soil (UF vs. AF) and organic mat-

ter type (ULTLIT vs. ALIT; Table 1). For example,

while initial rates of decomposition (0–90 d) in control

plots did not vary significantly between UF and AF,

over the course of the entire experiment (300 d) rates

were significantly higher at AF than at UF, irrespective

of the material being decomposed (P , 0.05). Mass

loss rates also varied by organic matter type. In par-

ticular, the relatively P-rich ALIT decomposed more

slowly than the P-poor ULTLIT at both sites, although

the difference was only significant at AF (P , 0.05;

Table 1). The fastest rates were achieved by decom-

posing the P-poor ULTLIT at the P-rich AF site (k 5

24.4), and the slowest rates were observed decom-

posing ALIT at UF (k 5 22.5; Table 1).

Nutrient fertilization effects on mass loss

We expected that P fertilization would accelerate

mass loss rates at the P-poor UF site, but not at the

relatively P-rich AF site. However, nutrient fertilization

had no effect on mass loss rates (Fig. 1); after 90 and

300 days in the field, calculated k values did not vary

significantly by treatment at either site. Moreover, the

litter type and soil type effects observed in decom-

posing material in control plots were not significant in

the fertilization plots; mass loss rates were similar, ir-

respective of site or organic matter type.

While nutrient fertilization did not affect mass loss

rates of decomposing organic matter, it did have pro-

found effects on nutrient dynamics through decom-

position (Fig. 2). P fertilization caused consistent in-

creases in the P concentration of the decomposing or-
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FIG. 2. Effects of nutrient fertilization on the percentage of initial phosphorus (P) remaining in organic matter through
time. Treatment types are represented by solid circles (control), open circles (N added), solid squares (P added), and open
squares (N 1 P added). Values are mean 6 SE.

ganic material at both sites. For example, after 90 d in

the field, material decomposing in P and N 1 P plots

consistently immobilized P, while material decompos-

ing in control and N plots (at both sites) frequently lost

P (Fig. 2). Increases in organic matter P content in P-

fertilized plots also translated to differences in the pro-

portion of original P remaining in the organic material

through decomposition. After 90 days, organic matter

masses in all plots had decreased by .40%, but ma-

terial decomposing in plots fertilized with P or N 1 P

in combination contained 120–180% of their original

P mass (Fig. 2). In contrast, material decomposing in

control and N plots retained much of their original P

mass (i.e., 70–110%), but rarely immobilized P.

Organic matter solubility

The soluble cell content of decomposing organic ma-

terial remained high throughout decomposition (Fig.

3). Following an initial decrease in the soluble fraction

in all bags 30 days after placement in the field, the

soluble fraction reformed in bags at both sites and in-

creased as decomposition proceeded (See Appendix E

for full solubility table). Initially, 26% of ULTLIT and

ALIT was soluble, and by day 30, the soluble fraction

decreased to 19% in ULTLIT and 13% in ALIT (Fig.

3; Appendix E). However, by day 60, the soluble frac-

tion of decomposing material had regenerated and

showed signs of increasing; by the end of the experi-

ment, 32% of the remaining ALIT and 40% of the

remaining ULTLIT was still soluble.

Phosphorus fertilization not only increased P immo-

bilization in organic matter decomposing in the litter lay-

er, but also caused increases in the dissolved inorganic P

content of the soluble fraction of decaying organic ma-

terial. For example, over the whole experiment, water

soluble inorganic P of leached material (both ALIT and

ULTLIT) decomposing in P plots at UF was more than

double the value obtained from control plot litter (0.16

6 0.03 mg/g soil vs. 0.07 6 0.02 mg/g soil, respectively;

N 5 20, P , 0.05). In contrast, the C content of organic

matter through time did not vary as a function of nutrient

availability. Thus, increased dissolved inorganic P con-

centrations led to corresponding decreases in the C:P ratio

of soluble DOM leached from material decomposing in

the P-fertilized plots.

Nutrient constraints on DOM decomposition

To test the effects of soil nutrient availability on

leached DOM mineralization in soil, we conducted an

incubation experiment using DOM leached from UL-

TLIT and added to UF soil (Fig. 4). Additions of

leached DOM to P-fertilized soil elicited significantly

higher respiration than corresponding additions to con-

trol, N, and N 1 P soils; respired CO2 reached con-

centrations of 15 171 6 498 mmol/mol air, while con-

trol, N, and N 1 P soils reached 13 486 6 758, 12 637

6 136, and 11 710 6 269 mmol/mol air, respectively,

after 48 h (P , 0.05). Moreover, CO2 evolution rates

and cumulative respired CO2 following DOM additions

were consistently higher in P-fertilized soil than in oth-

er treatments at all time points, and significantly higher

at all time points after 6 h (Fig. 4; P , 0.05).
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FIG. 3. Changes in the percentage of water-soluble or-
ganic matter (mean 6 SE) over the decomposition period, 0–
300 days. Circles represent solubility of litter from B. utile
trees grown on ultisol forest soil (ULTLIT), and squares rep-
resent litter from B. utile trees grown on alluvial forest soil
(ALIT). Open symbols represent litter decomposed on ultisol
forest soil (UF), and solid symbols represent litter decom-
posed on alluvial forest soil (AF).

FIG. 4. Soil CO2 fluxes (mean 6 SE) following dissolved
organic matter additions to control and fertilized soil samples.
Soil treatment types are represented by open circles (control),
solid circles (P added), solid squares (N added), and open
squares (N 1 P added). Open triangles depict CO2 flux in
control soil after adding water.

DISCUSSION

Organic matter mass loss

While we expected that mass loss during decom-

position would be rapid in this warm wet ecosystem,

the mass loss rates we measured were among the high-

est ever reported. For example, k values (Table 1) were

higher than all but one rate (out of 52) generated from

decomposing litter from both a temperate and tropical

woody species observed as part of the Long term In-

tersite Decomposition Experiment (LIDET; Gholz et

al. 2000). Moreover, the litter type used by Gholz et

al. (2000) was higher quality organic material (i.e.,

lower lignin content and lignin : N ratios) than the B.

utile material decomposed in this study (Appendix B),

suggesting that this environment is ideal for decom-

position. With very few exceptions, the B. utile bags

lost .50% mass in ;150 d, .80% mass in ;250 d,

and by day 300 of our experiment, .50% of our bags

had lost 100% of their original mass. These results

contrast strongly with the results of Hobbie and Vi-

tousek (2000), who conducted a similar experiment in

Hawaii. In that study, decomposing organic matter took

.2 yr to achieve .80% mass loss, though lower rates

would be expected given the lower mean annual tem-

perature, mean annual precipitation, and poorer litter

quality of the litter decomposed in Hawaii.

Our sites are similar to many other mainland tropical

rain forests with respect to tree species diversity and

composition, mean annual temperature, geomorphol-

ogy, and geology. However, with .5000 mm of rainfall

per year, they lie on the wet end of the tropical rain

forest precipitation spectrum. Some work suggests that

high inputs of precipitation can decrease decomposi-

tion. For example, Schuur (2001) showed that in sites

where rainfall varied from 2200 to .5000 mm/yr, in

situ rates of decomposition decreased by more than a

factor of six with increased precipitation. Schuur

(2001) attributed the declining rates to lowered oxygen

availability in wetter sites. However, the extremely rap-

id decomposition rates we observed argue against pre-

cipitation constraints on decomposition in the Costa

Rican sites, and corroborate a growing body of data

showing a strong positive relationship between decom-

position and precipitation up to 7000 mm/yr (J. Powers,

personal communication).

We suggest that the high rainfall regime at our sites

may be largely responsible for the extremely rapid de-

composition rates we observed in this experiment. But

how could high precipitation drive such high decom-

position rates? Traditional conceptual and simulation

models of mass loss during organic matter decompo-

sition have focused primarily on mineralization to CO2

in the litter layer as the dominant mass loss mechanism

(Parton et al. 1994). However, decomposition includes

another mass loss vector, DOM leaching (Currie and

Aber 1997), and recent work has shown that leaching

losses can vary with plant litter type (Allison and Vi-

tousek 2004) and with varying precipitation inputs

(Currie and Aber 1997). Thus, some current models

now link decomposition to the generation and flux of

soluble material out of litter to account for this im-

portant component of mass loss (e.g., Currie and Aber

1997, Neff and Asner 2001). In this study, we found

that following an initial decrease, the soluble fraction

of decomposing organic matter stayed high throughout

the experiment (Fig. 3; Appendix E). The fact that a

soluble C fraction remained relatively constant also

suggests that while episodic precipitation inputs may

temporarily deplete soluble C stocks, the soluble C

fraction in the litter layer is regenerated on relatively

short time scales (i.e., hours to days) and is constantly

available for transport to the soil.
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We suggest that in wet ecosystems, especially in sys-

tems with abundant relatively soluble litter, high rain-

fall may drive substantial transfers of soluble C from

the litter layer to the soil environment as DOM, in-

creasing the proportion of litter layer mass lost via

leaching. Moreover, variations in the potential to gen-

erate sizable fluxes of DOM from the litter layer may

contribute to variations in organic matter mass loss

rates across wet ecosystems. In other words, if high

rainfall can drive the movement of a substantial DOM

flux from the litter layer, mass loss may occur rapidly

despite a potential reduction in microbial activity

brought on by wetter conditions. However, if the litter

is resistant to DOM formation (as the sclerophyllous

Hawaiian Metrosideros polymorpha litter studied by

Schuur [2001] may well be), then very wet conditions

could result in slower mass loss. Certainly the possi-

bility deserves further attention.

Given the control exerted by P on ecosystem pro-

cesses in tropical rain forests, we expected that litter

layer mass loss would be fastest at alluvial forest (AF),

where both total and labile soil P values are signifi-

cantly higher than at ultisol forest (UF; Appendix A).

We also hypothesized that (1) litter P availability would

regulate mass loss rates, (2) litter layer mass loss would

be greatest with the P-rich ALIT in the P-rich AF site,

and (3) that rates of mass loss would be most con-

strained by P availability with ULTLIT at the UF site.

While mass loss was rapid irrespective of litter type or

site differences, we did observe significant effects of

soil type and litter type on rates (Table 1; Appendix

D). As expected, the fastest rates were at the P-rich AF

site; both ULTLIT and ALIT lost mass faster at AF

than either litter type at UF, suggesting that the higher

P availability at AF may contribute to faster rates of

mass loss at AF. However, contrary to our expectations,

higher litter P availability did not enhance mass loss

rates at either site (Table 1; Appendix D); the P-poor

ULTLIT actually lost mass more rapidly than ALIT at

AF (P , 0.01), and there were no differences in de-

composition rates between the two litter types at UF.

The lack of a relationship between organic matter P

content and mass loss suggests that P availability does

not exert primary control over organic matter mass loss

in this system.

There are several possible explanations for the var-

iable responses of mass loss to soil and litter P avail-

ability. For example, it is possible that differences in

litter quality or litter chemistry (and not P availability

per se) may be responsible for differences in mass loss

rates between ULTLIT and ALIT. In spite of lower P

content, ULTLIT had significantly more foliar nitrogen

and magnesium than ALIT (Appendix B), which may

have been more important than P content in driving

mass loss. Next, while UF and AF are similar with

respect to most important state factors, (e.g., climate,

elevation, species composition), it is possible that site

differences other than soil P availability contributed to

the contrasting effects of litter vs. soil P availability

on loss rates. Finally, it is noteworthy that ULTLIT was

consistently more soluble than ALIT throughout the

course of the experiment (Fig. 3; Appendix E). If, in

this extremely wet system, decomposition is dominated

by leaching (as we suggest), then the consistently high-

er solubility of ULTLIT may have led to the more rapid

mass loss of ULTLIT that we observed.

Nutrient fertilization effects on decomposition

Previous research in tropical rain forests has shown

that P availability can constrain mass loss during de-

composition (Hobbie and Vitousek 2000). However, in

this study, nutrient additions had no significant effects

on litter layer organic matter mass loss at either AF or

UF (Fig. 1; Appendix D). While this result seems coun-

terintuitive when viewed only in the context of P avail-

ability, it is not surprising given the high rainfall at

these sites, and the extremely rapid rates of decom-

position we observed. For example, most studies in-

vestigating nutrient limitation on mass loss during de-

composition have been conducted in drier tropical (or

temperate) ecosystems, where the potential for mass

loss via leaching is lower. In drier systems, high nu-

trient demand by active microorganisms mineralizing

organic material to CO2 directly in the litter may drive

observed nutrient limitation of mass loss commonly

observed in other decomposition experiments. Alter-

natively, in wet systems where the potential for leach-

ing and transport of DOM from litter to soil is greater,

nutrient constraints on mass loss in the litter layer are

less likely. There, controls such as litter solubility and

precipitation inputs (both of which are high in our sites)

may exert greater control on mass loss. In other words,

in wet ecosystems with seasonally large litter pools,

leaching losses of C from the litter layer may outpace

C mineralization in the litter layer. If so, nutrient con-

straints on decomposition may be most pronounced at

the site of C delivery and C mineralization, which is

the soil (Fig. 5).

Our results show that soil nutrients regulate C min-

eralization of DOM leached from the litter layer to the

soil. In our incubation study, P fertilization led to a

significant increase in the proportion of added DOM

that was converted to CO2 (Fig. 4). The strong effects

of P availability on the rate of DOM mineralization in

soil suggest that P fertility may influence the ultimate

fate of leached DOM that enters the soil (Fig. 5). In

particular, our results indicate that soil nutrient fertility

may influence ecosystem C balance by regulating the

proportion of leached C that is quickly lost from an

ecosystem (via microbial respiration) or that persists

within an ecosystem (e.g., via soil stabilization and

storage; Cleveland et al. 2002; C. Cleveland and A.

Townsend, unpublished manuscript).

In contrast to P fertilization, our data indicate that

NH4NO3 fertilization may have inhibited soluble C de-

composition over the course of our incubation exper-
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FIG. 5. Conceptual model of the effects of nutrients on decomposition in systems where mass loss from the litter layer
is dominated by (A) C mineralization, or (B) leaching losses of dissolved organic matter (DOM) to the soil. Nutrient availability
may constrain mass loss directly if most C mineralization occurs in the litter layer (A). However, in systems with high
precipitation and/or highly water-soluble litter, nutrient availability may not limit mass loss (B), but may ultimately regulate
DOM mineralization in the soil. The size of the solid arrows represents the relative flux of either CO2 (black arrows) or
leached DOM (gray arrows).

iment. Over the first 24 h of the incubation, there were

no significant differences in respiration between con-

trol, N, and N 1 P amended samples (Fig. 4). However,

after 32 h, respiration in soils amended with N and N

1 P were significantly lower than control and P samples

(Fig. 4). While we have no evidence that soil microbial

respiration is N limited at UF (and therefore would not

expect increased N availability to stimulate soil res-

piration), the fact that respiration in both N and N 1

P samples was significantly lower (P , 0.05) than con-

trol and P samples by the end of the experiment (32–

48 h) suggests that N had negative effects on DOM

respiration. This result is consistent with those com-

monly observed in several other ecosystems when add-

ing labile C to N-fertilized soil (Fog 1988).

While nutrient fertilization had no significant effect

on mass loss during decomposition, it did alter litter

nutrient dynamics through time, with potentially pro-

found effects on leached DOM decomposition in soil.

In particular, material decomposed in plots amended

with P or N 1 P had significantly higher P concentra-

tions than plots with no P amendments, suggesting mi-

crobial immobilization of P during decomposition in

the P-amended plots (Fig. 2). Previous work has shown

that fertilization can induce microbial nutrient uptake

without simultaneous effects on litter mass loss rates

(McGroddy et al. 2004). Microbial immobilization of

rare elements is likely an important nutrient retention

mechanism in nutrient-poor systems (Stark and Jordan

1978, Cleveland et al. 2004, Olander and Vitousek

2004). Our data corroborate previous observations that

decomposers are able to retain or take up additional P

when it is readily available, even when additional P

immobilization does not appear to affect mass loss.

However, the decline in P immobilization at later stages

of decomposition suggests that as available C content

of remaining litter approaches zero, microbial demand

for P (and hence P immobilization) also decrease.

While increased P immobilization in P-rich soil may

not affect mass loss per se, our data indicate that it

may ultimately lead to increased C mineralization in

soil. For example, high P immobilization in the P plots

led to a concomitant increase in the P content of the

soluble fraction of organic material throughout decom-

position, resulting in declines in the C:P ratios of sol-

uble DOM. A lower C:P ratio of the leached DOM

fraction as a result of P fertilization could thus lead to

faster rates of DOM decomposition and soil respiration

by the P-limited soil microbial community. In other

words, the site of P-limited C mineralization (i.e., in

the litter layer or in the soil) is not as important as the

fact that ultimately, in P-limited systems, greater P

availability stimulates respiratory losses of CO2, and

increases the proportion of C that is rapidly respired

during decomposition.

Finally, in wet ecosystems where DOM transport is

a major component of litter mass loss, there may be

strong and somewhat unique feedbacks between low

nutrient availability and decomposition that would not

be revealed by focusing on litter mass loss dynamics

alone. For example, low P availability constrained min-

eralization of soluble C in the P-poor UF soil (Fig. 4).

Thus, in wet ecosystems, if high rainfall causes a large

fraction of litter C to be transported to soil as DOM,

its ultimate fate likely will depend on soil available P

levels, and the controls over decomposition of that orig-

inal litter C become much different once it reaches the

soil environment. Here, competition for available P oc-

curs not only between plants and microbial commu-

nities, but also with geochemical sinks for labile P that

are created by the clay-rich tropical soils (Uehara and

Gillman 1981, Olander and Vitousek 2004). As such,

P constraints for a given amount of C may be greater

if that C is decomposed in the soil rather than in the

litter layer, thereby creating greater microbial immo-

bilization, and feedbacks to even lower P availability
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and nutrient turnover. The reduced decomposition and

nutrient turnover that is sometimes observed in very

wet sites may not only be a function of lower oxygen

availability (Schuur 2001), but also of feedbacks cre-

ated by moving C from litter to soils. This hypothesis

is consistent with much of our data from the UF site,

where low P soil does not hinder rapid litter mass loss,

but where it does create low foliar P concentrations,

(A. Townsend and C. Cleveland, unpublished manu-

script), limits free-living N fixation (S. Reed, C. Cleve-

land, and A. Townsend, unpublished manuscript), and

constrains the decomposition of leached soluble C ob-

served here (Fig. 4).

CONCLUSIONS

Several analyses suggest that tropical forests may

currently be C sinks, and absorbed much of the an-

thropogenic CO2 emitted during the 1990s (Phillips et

al. 1998, Malhi and Grace 2000, Townsend et al.

2002b). However, this conclusion is not widely ac-

cepted, and recent data suggest significant net C loss

from intact tropical forests (Clark 2002, Loescher et

al. 2003, Saleska et al. 2003). Given the importance of

tropical forests in the global carbon budget, it is critical

that we understand the factors that regulate C cycling

in these ecosystems. Recent analyses have focused on

the role of climate and disturbance in regulating eco-

system CO2 exchange (Cox et al. 2000), but despite the

importance of nutrient limitation to C sequestration in

mid-latitude ecosystems (Schimel 1995), the role of

nutrient limitation in regulating the C balance of trop-

ical ecosystems has not been well established.

This study demonstrates that methods commonly

used for determining organic matter decomposition

rates (i.e., mass loss) may not provide complete insight

into the actual importance of nutrient availability in

regulating C losses in wet ecosystems. Instead, our data

indicate that assessing the effects of nutrient avail-

ability on decomposition requires not only estimates of

organic matter mass loss rates, but also estimates of

the importance of leaching during decomposition.

Moreover, our data indicate that while nutrient avail-

ability may not affect mass loss, it may ultimately reg-

ulate ecosystem C losses by regulating the proportion

of leached DOM that is microbially respired to CO2.

Thus, a more complete picture of the C balance of

tropical forests will require continued efforts to elu-

cidate the extent to which nutrients regulate the de-

composition of both insoluble and soluble forms of C

in these C-rich ecosystems.
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APPENDIX A

Table showing study site characteristics (Ecological Archives E087-027-A1).

APPENDIX B

Table showing initial foliar chemistry (Ecological Archives E087-027-A2).

APPENDIX C

Schematic representation of the experimental design (Ecological Archives E087-027-A3).



February 2006 503DECOMPOSITION IN A TROPICAL RAIN FOREST

APPENDIX D

Three-way ANOVA table showing results for the effects of soil type, litter type, and fertilization on annual decomposition
rate, k (Ecological Archives E087-027-A4).

APPENDIX E

Table showing soluble fraction of litter through time (Ecological Archives E087-027-A5).
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