634 research outputs found
Histochemistry through the years, browsing a long-established journal: novelties in traditional subjects
Histochemical journals represent a traditional forum where methodological and technological improvements can be presented and validated in view of their applications to investigate not only cytology and histology in normal and diseased conditions but to test as well hypotheses on more basic issues for life sciences, such as comparative and evolutionary biology. The earliest scientific journals on histochemistry began their publication in the first half of the ‘50s of the last century, and their readership did not probably change over the years; rather, the authors’ interests may have progressively been changing as well as the main topics of their articles. This hypothesis is discussed, based on the subjects of the article published in the first and last ten years in the European Journal of Histochemistry, as an example of old journal which started publication in 1954, being since then the official organ of the Italian Society of Histochemistry. This survey confirmed that histochemistry has provided and still offers unique opportunities for studying the structure, chemical composition and function of cells and tissues in a wide variety of living organisms, especially when the topological distribution of specific molecular components has diagnostic or predictive significance, as it occurs in human and veterinary biology and pathology. Some subjects (e.g. histochemistry applied to muscle cells or to mineralized tissues) have recently become rather popular, whereas a wider application of the histochemical approach may be envisaged for plant cells and tissues
Identifying pathological biomarkers: histochemistry still ranks high in the omics era
In recent years, omic analyses have been proposed as possible approaches to diagnosis, in particular for tumours, as they should be able to provide quantitative tools to detect and measure abnormalities in gene and protein expression, through the evaluation of transcription and translation products in the abnormal vs normal tissues. Unfortunately, this approach proved to be much less powerful than expected, due to both intrinsic technical limits and the nature itself of the pathological tissues to be investigated, the heterogeneity deriving from polyclonality and tissue phenotype variability between patients being a major limiting factor in the search for unique omic biomarkers. Especially in the last few years, the application of refined techniques for investigating gene expression in situ has greatly increased the diagnostic/prognostic potential of histochemistry, while the progress in light microscopy technology and in the methods for imaging molecules in vivo have provided valuable tools for elucidating the molecular events and the basic mechanisms leading to a pathological condition. Histochemical techniques thus remain irreplaceable in pathologist's armamentarium, and it may be expected that even in the future histochemistry will keep a leading position among the methodological approaches for clinical pathology
Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer’s disease patients: A pilot study
Available online 26 August 2019Objective
To investigate whether anodal and cathodal transcranial direct current stimulation (tDCS) can modify cognitive performance and neural activity in healthy elderly and Alzheimer’s disease (AD) patients.
Methods
Fourteen healthy elderly and twelve AD patients performed a working memory task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex. Behavioural performance, event-related potentials (P200, P300) and evoked cortical oscillations were studied as correlates of working memory.
Results
Anodal tDCS increased P200 and P300 amplitudes in healthy elderly. Cathodal tDCS increased P200 amplitude and frontal theta activity between 150 and 300 ms in AD patients. Improved working memory after anodal tDCS correlated with increased P300 in healthy elderly. In AD patients, slight tendencies between enhanced working memory and increased P200 after cathodal tDCS were observed.
Conclusions
Functional neural modulations were promoted by anodal tDCS in healthy elderly and by cathodal tDCS in AD patients.
Significance
Interaction between tDCS polarity and the neural state (e.g., hyper-excitability exhibited by AD patients) suggests that appropriate tDCS parameters (in terms of tDCS polarity) to induce behavioural improvements should be chosen based on the participant’s characteristics. Future studies using higher sample sizes should confirm and extend the present findings.This study was funded by the Italian Ministry of Health GR-2011-02349998 to MCP and the European Commission Marie-Skłodowska Curie Actions, Individual Fellowships; 655423-NIBSAD to JC
Interfacial properties of most monofluorinated bile acids deviate markedly from the natural congeners: studies with the Langmuir-Pockels surface balance
We characterized the air-water interfacial properties of four monofluorinated bile acids alone and in binary mixtures with a common lecithin, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), using an automated Langmuir-Pockels surface balance. We compared 7alpha-fluoromurocholic acid (FMCA), 7alpha-fluorohyodeoxycholic acid (FHDCA), 6alpha-fluoroursodeoxycholic acid (FUDCA), and 6alpha-fluorochenodeoxycholic acid (FCDCA) with their natural dihydroxy homologs, murocholic acid (MCA), hyodeoxycholic acid (HDCA), ursodeoxycholic acid (UDCA), and chenodeoxycholic acid (CDCA). For further comparison, two trihydroxy bile acids, 3alpha,6beta,7alpha-trihydroxycholanoic acid [alpha-muricholic acid (alpha-MCA)] and 3alpha,6alpha,7beta-trihydroxycholanoic acid [omega-muricholic acid (omega-MCA)], with isologous OH polar functions to FMCA and FUDCA were also studied. Pressure-area isotherms of MCA, HDCA, UDCA, CDCA, and FMCA displayed sharp collapse points. In contrast, FHDCA, FUDCA, and FCDCA formed monolayers that were less stable than the trihydroxy bile acids, displaying second-order phase transitions in their isotherms. All natural and fluorinated bile acids condensed mixed monolayers with POPC, with maximal effects at molar bile acid concentrations between 30 and 50 mol%. Examination of molecular models revealed that the 7alpha-F atom of the interfacially stable FMCA projects away from the 6beta-OH function, resulting in minimal steric interactions, whereas in FHDCA, FUDCA, and FCDCA, close vicinal interactions between OH and F polar functions result in progressive bulk solubility upon monolayer compression. These results provide a framework for designing F-modified bile acids to mimic or diverge from the natural compounds in vivo
Rasch analysis of the Fatigue Severity Scale in Italian subjects with multiple sclerosis.
To perform a psychometric analysis of the Fatigue Severity Scale (FSS) using Rasch analysis in a sample of Italian subjects with multiple sclerosis
Routinely frozen biopsies of human skeletal muscle are suitable for morphological and immunocytochemical analyses at transmission electron microscopy
The aim of the present investigation was to evaluate whether routinely frozen biopsies of human skeletal muscle may be suitable for morphological and immunocytochemical analyses at transmission electron microscopy. The fixation/embedding protocols we successfully used for decades to process fresh mammalian tissues have been applied to frozen muscle biopsies stored for one to four years in liquid nitrogen. After 2.5% glutaraldehyde -2% paraformaldehyde - 1% OsO4 fixation and embedding in epoxy resin, the ultrastructural morphology of myofibres and satellite cells as well as of their organelles and inclusions proved to be well preserved. As expected, after 4% paraformaldehyde - 0.5% glutaraldehyde fixation and embedding in LR White resin, the morphology of membrane-bounded organelles was relatively poor, although myofibrillar and sarcomeric organization was still recognizable. On the contrary, the myonuclei were excellently preserved and, after conventional staining with uranyl acetate, showed an EDTA-like effect, i.e. the bleaching of condensed chromatin, which allows the visualization of RNP-containing structures. These samples proved to be suitable for immunocytochemical analyses of both cytoskeletal and nuclear components, whereas the poor mitochondrial preservation makes unreliable any in situ investigation on these organelles
The Golgi apparatus is a primary site of intracellular damage after photosensitization with Rose Bengal acetate
The aim of the present investigation was to elucidate whether the Golgi apparatus undergoes photodamage following administration of the fluorogenic substrates Rose Bengal acetate (RBAc) and irradiation at the appropriate wavelength. Human HeLa cells were treated in culture and the changes in the organization of the Golgi apparatus were studied using fluorescence confocal microscopy and electron microscopy, after immunocytochemical labeling. To see whether the cytoskeletal components primarily involved in vescicle traffic (i.e., microtubules) might also be affected, experiments of tubulin immunolabeling were performed. After treatment with RBAc and irradiation, cells were allowed to grow in drug-free medium for different times. 24hr after irradiation, the cisternae of the Golgi apparatus became packed, and after 48-72 hr they appeared more fragmented and scattered throughout the cytoplasm; these changes in the organization of the Golgi cisternae were confirmed at electron microscopy. Interestingly enough, apoptosis was found to occur especially 48-72h after irradiation, and apoptotic cells exhibited a dramatic fragmentation of the Golgi membranes. The immunolabeling with anti-tubulin antibody showed that microtubules were also affected by irradiation in RBAc-treated cells
- …