142 research outputs found

    Interferons in Traumatic Brain and Spinal Cord Injury: Current Evidence for Translational Application

    Get PDF
    This review article provides a general perspective of the experimental and clinical work surrounding the role of type-I, type-II, and type-III interferons (IFNs) in the pathophysiology of brain and spinal cord injury. Since IFNs are themselves well-known therapeutic targets (as well as pharmacological agents), and anti-IFNs monoclonal antibodies are being tested in clinical trials, it is timely to review the basis for the repurposing of these agents for the treatment of brain and spinal cord traumatic injury. Experimental evidence suggests that IFN-α may play a detrimental role in brain trauma, enhancing the pro-inflammatory response while keeping in check astrocyte proliferation; converging evidence from genetic models and neutralization by monoclonal antibodies suggests that limiting IFN-α actions in acute trauma may be a suitable therapeutic strategy. Effects of IFN-β administration in spinal cord and brain trauma have been reported but remain unclear or limited in effect. Despite the involvement in the inflammatory response, the role of IFN-γ remains controversial: although IFN-γ appears to improve the outcome of traumatic spinal cord injury, genetic models have produced either beneficial or detrimental results. IFNs may display opposing actions on the injured CNS relative to the concentration at which they are released and strictly dependent on whether the IFN or their receptors are targeted either via administration of neutralizing antibodies or through genetic deletion of either the mediator or its receptor. To date, IFN-α appears to most promising target for drug repurposing, and monoclonal antibodies anti IFN-α or its receptor may find appropriate use in the treatment of acute brain or spinal cord injury

    Penetration of cefuroxime into the cerebrospinal fluid of patients with traumatic brain injury

    Get PDF
    Cefuroxime levels were measured in cerebrospinal fluid (CSF) and serum of four patients with traumatic brain injury following the implantation of intraventricular catheters. The levels ranged from 0.15 to 2.03 ÎĽg/mL in CSF and from 1.8 to 66.9 ÎĽg/mL in serum. No ventriculostomy related infections were detecte

    Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles.</p> <p>Methods</p> <p>Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O<sub>2</sub>/88% N<sub>2</sub>) or normoxic (22% O<sub>2</sub>/78% N<sub>2</sub>) ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod, beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique.</p> <p>Results</p> <p>TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1β and TNF but did not further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with respect to glucose, lactate, and glutamate levels.</p> <p>Conclusion</p> <p>Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction.</p

    The Design of a Best Execution Market

    Get PDF
    The notion of best execution on securities markets is manifold. Best execution has different meanings to different market participants, therefore, it is difficult to find a unique market structure that meets this requirements for all the participants. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the concrete market structureÂ’s characteristics, like e. g. the price discovery mechanism, trading frequency or the market transparency. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the Focussing on customer orientation, we propose a new type of market structure: the dynamic market model, where participants individually choose the characteristics of the market structure for each transaction they perform. Furthermore, this paper offers an approach to design dynamic market models from scratch. We briefly sketch the necessary steps towards a dynamic market model. Traditional market structures are either static or flexible, meaning that an individual market participant has no influence regarding the Finally, we present AMTRAS; the prototype of an electronic trading system that was conceived and implemented following the aforementioned approach. AMTRAS is an software-agent based bond trading system designed for the need of institutional investors. It implements a dynamic market model, a sophisticated product- and partner matching scheme as well as an innovative price discovery approach

    The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury

    Get PDF
    The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI), we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI. This data is consistent with the transient upregulation of ACKR2 observed in mouse brain after closed head injury (CHI). As compared to WT animals, ACKR2-/- mice showed a higher mortality rate after CHI, while the neurological outcome in surviving mice was similar. At day 1 post-injury, ACKR2-/- mice displayed aggravated lesion volume and no differences in CCL2 expression and macrophage recruitment relative to WT mice. Reciprocal regulation of ACKR2 and CCL2 expression was explored in cultured astrocytes, which are recognized as the major source of CCL2 and also express ACKR2. ACKR2 mRNA increased as early as 2 hours after an inflammatory challenge in WT astrocytes. As expected, CCL2 expression also dramatically increased at 4 hours in WT astrocytes but was significantly lower in ACKR2-/- astrocytes, possibly indicating a co-regulation of CCL2 and ACKR2 in these cells. Conversely, in vivo, CCL2 mRNA/protein levels were increased similarly in ACKR2-/- and WT brains at 4 and 12 hours after CHI, in line with the lack of differences in cerebral macrophage recruitment and neurological recovery. In conclusion, ACKR2 is induced after TBI and has a significant impact on mortality and lesion development acutely following CHI, while its role in chemokine expression, macrophage activation, brain pathology, and neurological recovery at later time-points is minor. Concordant to evidence in multiple sclerosis experimental models, our data corroborate a distinct role for ACKR2 in cerebral inflammatory processes compared to its reported functions in peripheral tissues

    Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury

    Get PDF
    Traumatic brain injury is a heterogeneous and multifaceted neurological disorder that involves diverse pathophysiological pathways and mechanisms. Thorough characterization and monitoring of the brain’s status after neurotrauma is therefore highly complicated. Magnetic resonance imaging (MRI) provides a versatile tool for in vivo spatiotemporal assessment of various aspects of central nervous system injury, such as edema formation, perfusion disturbances and structural tissue damage. Moreover, recent advances in MRI methods that make use of contrast agents have opened up additional opportunities for measurement of events at the level of the cerebrovasculature, such as blood–brain barrier permeability, leukocyte infiltration, cell adhesion molecule upregulation and vascular remodeling. It is becoming increasingly clear that these cerebrovascular alterations play a significant role in the progression of post-traumatic brain injury as well as in the process of post-traumatic brain repair. Application of advanced multiparametric MRI strategies in experimental, preclinical studies may significantly aid in the elucidation of pathomechanisms, monitoring of treatment effects, and identification of predictive markers after traumatic brain injury

    The Toronto prehospital hypertonic resuscitation-head injury and multi organ dysfunction trial (TOPHR HIT) - Methods and data collection tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials evaluating the use of hypertonic saline in the treatment of hypovolemia and head trauma suggest no survival superiority over normal saline; however subgroup analyses suggest there may be a reduction in the inflammatory response and multiorgan failure which may lead to better survival and enhanced neurocognitive function. We describe a feasibility study of randomizing head injured patients to hypertonic saline and dextran vs. normal saline administration in the out of hospital setting.</p> <p>Methods/Design</p> <p>This feasibility study employs a randomized, placebo-controlled design evaluating normal saline compared with a single dose of 250 ml of 7.5% hypertonic saline in 6% dextran 70 in the management of traumatic brain injuries. The primary feasibility endpoints of the trial were: 1) baseline survival rates for the treatment and control group to aid in the design of a definitive multicentre trial, 2) randomization compliance rate, 3) ease of protocol implementation in the out-of-hospital setting, and 4) adverse event rate of HSD infusion.</p> <p>The secondary objectives include measuring the effect of HSD in modulating the immuno-inflammatory response to severe head injury and its effect on modulating the release of neuro-biomarkers into serum; evaluating the role of serum neuro-biomarkers in predicting patient outcome and clinical response to HSD intervention; evaluating effects of HSD on brain atrophy post-injury and neurocognitive and neuropsychological outcomes.</p> <p>Discussion</p> <p>We anticipate three aspects of the trial will present challenges to trial success; ethical demands associated with a waiver of consent trial, challenging follow up and comprehensive accurate timely data collection of patient identifiers and clinical or laboratory values. In addition all the data collection tools had to be derived de novo as none existed in the literature.</p> <p>Trial registration number</p> <p>NCT00878631</p
    • …
    corecore