1,386 research outputs found
Supercurrent Spectroscopy of Andreev States
We measure the excitation spectrum of a superconducting atomic contact. In
addition to the usual continuum above the superconducting gap, the single
particle excitation spectrum contains discrete, spin-degenerate Andreev levels
inside the gap. Quasiparticle excitations are induced by a broadband on-chip
microwave source and detected by measuring changes in the supercurrent flowing
through the atomic contact. Since microwave photons excite quasiparticles in
pairs, two types of transitions are observed: Andreev transitions, which
consists of putting two quasiparticles in an Andreev level, and transitions to
odd states with a single quasiparticle in an Andreev level and the other one in
the continuum. In contrast to absorption spectroscopy, supercurrent
spectroscopy allows detection of long-lived odd states.Comment: typos correcte
Exciting Andreev pairs in a superconducting atomic contact
The Josephson effect describes the flow of supercurrent in a weak link, such
as a tunnel junction, nanowire, or molecule, between two superconductors. It is
the basis for a variety of circuits and devices, with applications ranging from
medicine to quantum information. Currently, experiments using Josephson
circuits that behave like artificial atoms are revolutionizing the way we probe
and exploit the laws of quantum physics. Microscopically, the supercurrent is
carried by Andreev pair states, which are localized at the weak link. These
states come in doublets and have energies inside the superconducting gap.
Existing Josephson circuits are based on properties of just the ground state of
each doublet and so far the excited states have not been directly detected.
Here we establish their existence through spectroscopic measurements of
superconducting atomic contacts. The spectra, which depend on the atomic
configuration and on the phase difference between the superconductors, are in
complete agreement with theory. Andreev doublets could be exploited to encode
information in novel types of superconducting qubits.Comment: Submitted to Natur
Phase controlled superconducting proximity effect probed by tunneling spectroscopy
Using a dual-mode STM-AFM microscope operating below 50mK we measured the
Local Density of States (LDoS) along small normal wires connected at both ends
to superconductors with different phases. We observe that a uniform minigap can
develop in the whole normal wire and in the superconductors near the
interfaces. The minigap depends periodically on the phase difference. The
quasiclassical theory of superconductivity applied to a simplified 1D model
geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter
Electron transport through a metal-molecule-metal junction
Molecules of bisthiolterthiophene have been adsorbed on the two facing gold
electrodes of a mechanically controllable break junction in order to form
metal-molecule(s)-metal junctions. Current-voltage (I-V) characteristics have
been recorded at room temperature. Zero bias conductances were measured in the
10-100 nS range and different kinds of non-linear I-V curves with step-like
features were reproducibly obtained. Switching between different kinds of I-V
curves could be induced by varying the distance between the two metallic
electrodes. The experimental results are discussed within the framework of
tunneling transport models explicitly taking into account the discrete nature
of the electronic spectrum of the molecule.Comment: 12 pages, 12 figures to appear in Phys. Rev. B 59(19) 199
Superconducting atomic contacts inductively coupled to a microwave resonator
We describe and characterize a microwave setup to probe the Andreev levels of
a superconducting atomic contact. The contact is part of a superconducting loop
inductively coupled to a superconducting coplanar resonator. By monitoring the
resonator reflection coefficient close to its resonance frequency as a function
of both flux through the loop and frequency of a second tone we perform
spectroscopy of the transition between two Andreev levels of highly
transmitting channels of the contact. The results indicate how to perform
coherent manipulation of these states.Comment: 14 pages, 10 figures, to appear in special issue on break-junctions
in JOPC
Theory of microwave spectroscopy of Andreev bound states with a Josephson junction
We present a microscopic theory for the current through a tunnel Josephson
junction coupled to a non-linear environment, which consists of an Andreev
two-level system coupled to a harmonic oscillator. It models a recent
experiment [Bretheau, Girit, Pothier, Esteve, and Urbina, Nature (London) 499,
312 (2013)] on photon spectroscopy of Andreev bound states in a superconducting
atomic-size contact. We find the eigenenergies and eigenstates of the
environment and derive the current through the junction due to inelastic Cooper
pair tunneling. The current-voltage characteristic reveals the transitions
between the Andreev bound states, the excitation of the harmonic mode that
hybridizes with the Andreev bound states, as well as multi-photon processes.
The calculated spectra are in fair agreement with the experimental data.Comment: 8 pages, 6 figure
Evidence for long-lived quasiparticles trapped in superconducting point contacts
We have observed that the supercurrent across phase-biased, highly
transmitting atomic size contacts is strongly reduced within a broad phase
interval around {\pi}. We attribute this effect to quasiparticle trapping in
one of the discrete sub-gap Andreev bound states formed at the contact.
Trapping occurs essentially when the Andreev energy is smaller than half the
superconducting gap {\Delta}, a situation in which the lifetime of trapped
quasiparticles is found to exceed 100 \mus. The origin of this sharp energy
threshold is presently not understood.Comment: Article (5 pages) AND Supplemental material (14 pages). To be
published in Physical Review Letter
Dynamics of quasiparticle trapping in Andreev levels
We present a theory describing the trapping and untrapping of quasiparticles
in the Andreev bound level of a single-channel weak link between two
superconductors. We calculate the rates of the transitions between even and odd
occupations of the Andreev level induced by absorption and emission of both
photons and phonons. We apply the theory to a recent experiment [Phys. Rev.
Lett. 106, 257003 (2011)] in which the dynamics of the trapping of
quasiparticles in the Andreev levels of superconducting atomic contacts coupled
to a Josephson junction was measured. We show that the plasma energy
of the Josephson junction defines a rather abrupt transition between a fast
relaxation regime dominated by coupling to photons and a slow relaxation regime
dominated by coupling to phonons. With realistic parameters the theory provides
a semi-quantitative description of the experimental results.Comment: 11 pages, 9 figures. Accepted for publication in Physical Review
Semigroups associated to generalized polynomials and some classical formulas
We study operator semigroups associated with a family of generalized orthogonal polynomials with Hermitian matrix entries. For this we consider a Markov generator sequence, and therefore a Markov semigroup, for the family of orthogonal polynomials on R related to the generalized polynomials. We give an expression of the infinitesimal generator of this semigroup and under the hypothesis of diffusion we prove that this semigroup is also Markov. We also give expressions for the kernel of this semigroup in terms of the one-dimensional kernels and obtain some classical formulas for the generalized orthogonal polynomials from the correspondent formulas for orthogonal polynomials on R
- …