1,562 research outputs found

    Parenting Young Children: Comparison of a Psychoeducational Program in Mexico and the United States

    Get PDF
    The purpose of this study was to compare the cross-cultural effectiveness of a psychoeducational program with 82 Mexican and 63 American mothers with very young children. The 10-hour program was presented by trained facilitators in Mexico and the United States to small groups of mothers. Results showed that the both groups of mothers significantly increased their expectations and use of nurturing strategies and reduced their use of verbal and corporal punishment with their young children following the program. In addition, the reported frequency of child behavior problems decreased significantly at post-test. The similar results obtained across cultures were explained based on research finding similar parenting practices with young children between Mexican and American parents

    Optimized generation of spatial qudits by using a pure phase spatial light modulator

    Get PDF
    We present a method for preparing arbitrary pure states of spatial qudits, namely, D-dimensional (D > 2) quantum systems carrying information in the transverse momentum and position of single photons. For this purpose, a set of D slits with complex transmission are displayed on a spatial light modulator (SLM). In a recent work we have shown a method that requires a single phase-only SLM to control independently the complex coefficients which define the quantum state of dimension D. The amplitude information was codified by introducing phase gratings inside each slit and the phase value of the complex transmission was added to the phase gratings. After a spatial filtering process we obtained in the image plane the desired qudit state. Although this method has proven to be a good alternative to compact the previously reported architectures, it presents some features that could be improved. In this paper we present an alternative scheme to codify the required phase values that minimizes the effects of temporal phase fluctuations associated to the SLM where the codification is carried on. In this scheme the amplitudes are set by appropriate phase gratings addressed at the SLM while the relative phases are obtained by a lateral displacement of these phase gratings. We show that this method improves the quality of the prepared state and provides very high fidelities of preparation for any state. An additional advantage of this scheme is that a complete 2\pi modulation is obtained by shifting the grating by one period, and hence the encoding is not limited by the phase modulation range achieved by the SLM. Numerical simulations, that take into account the phase fluctuations, show high fidelities for thousands of qubit states covering the whole Bloch sphere surface. Similar analysis are performed for qudits with D = 3 and D = 7.Comment: 12 pages, 7 figure

    Synthesis of Graphitic Carbon Nanostructures from Sawdust and Their Application as Electrocatalyst Supports

    Get PDF
    We present a novel and facile synthetic method for fabricating graphitic carbon nanostructures (GCNs) from sawdust. This method is based on the use of catalysts (Fe or Ni) that allows the direct conversion of sawdust into highly graphitized carbon material. The following procedure was used to obtain these graphitic nanoparticles:  (a) impregnation of the sawdust particles with iron or nickel salts, (b) carbonization of the impregnated material at a temperature of 900 or 1000 °C, and (c) selective removal of the non-graphitized carbon (amorphous carbon) by an oxidant (KMnO4). The resulting carbon is made up of nanosized graphitic structures (i.e., nanocapsules, nanocoils, nanoribbons), which have a high crystallinity, as evidenced by TEM/SAED, XRD and Raman analysis. These GCNs were used as supports for platinum nanoparticles. Such prepared electrocatalysts show an electrocatalytical surface area close to 90 m2.g-1 Pt, and they present a similar or higher electrocatalytic activity toward methanol electrooxidation than the Pt/Vulcan electrocatalyst prepared in the same conditions.The financial support for this research work provided by the Spanish MCyT (MAT2005-00262, MAT2004-01479 and FEDER) is gratefully acknowledged.Peer reviewe

    Improved Quantum Hard-Sphere Ground-State Equations of State

    Full text link
    The London ground-state energy formula as a function of number density for a system of identical boson hard spheres, corrected for the reduced mass of a pair of particles in a sphere-of-influence picture, and generalized to fermion hard-sphere systems with two and four intrinsic degrees of freedom, has a double-pole at the ultimate \textit{regular} (or periodic, e.g., face-centered-cubic) close-packing density usually associated with a crystalline branch. Improved fluid branches are contructed based upon exact, field-theoretic perturbation-theory low-density expansions for many-boson and many-fermion systems, appropriately extrapolated to intermediate densities, but whose ultimate density is irregular or \textit{random} closest close-packing as suggested in studies of a classical system of hard spheres. Results show substantially improved agreement with the best available Green-function Monte Carlo and diffusion Monte Carlo simulations for bosons, as well as with ladder, variational Fermi hypernetted chain, and so-called L-expansion data for two-component fermions.Comment: 15 pages and 7 figure

    Towards defining the role of glycans as hardware in information storage and transfer: Basic principles, experimental approaches and recent progress

    Get PDF
    The term `code' in biological information transfer appears to be tightly and hitherto exclusively connected with the genetic code based on nucleotides and translated into functional activities via proteins. However, the recent appreciation of the enormous coding capacity of oligosaccharide chains of natural glycoconjugates has spurred to give heed to a new concept: versatile glycan assembly by the genetically encoded glycosyltransferases endows cells with a probably not yet fully catalogued array of meaningful messages. Enciphered by sugar receptors such as endogenous lectins the information of code words established by a series of covalently linked monosaccharides as fetters for example guides correct intra- and intercellular routing of glycoproteins, modulates cell proliferation or migration and mediates cell adhesion. Evidently, the elucidation of the structural frameworks and the recognition strategies within the operation of the sugar code poses a fascinating conundrum. The far-reaching impact of this recognition mode on the level of cells, tissues and organs has fueled vigorous investigations to probe the subtleties of protein-carbohydrate interactions. This review presents information on the necessarily concerted approach using X-ray crystallography, molecular modeling, nuclear magnetic resonance spectroscopy, thermodynamic analysis and engineered ligands and receptors. This part of the treatise is flanked by exemplarily chosen insights made possible by these techniques. Copyright (C) 2001 S. Karger AG, Basel

    Maximum-confidence discrimination among symmetric qudit states

    Full text link
    We study the maximum-confidence (MC) measurement strategy for discriminating among nonorthogonal symmetric qudit states. Restricting to linearly dependent and equally likely pure states, we find the optimal positive operator valued measure (POVM) that maximizes our confidence in identifying each state in the set and minimizes the probability of obtaining inconclusive results. The physical realization of this POVM is completely determined and it is shown that after an inconclusive outcome, the input states may be mapped into a new set of equiprobable symmetric states, restricted, however, to a subspace of the original qudit Hilbert space. By applying the MC measurement again onto this new set, we can still gain some information about the input states, although with less confidence than before. This leads us to introduce the concept of "sequential maximum-confidence" (SMC) measurements, where the optimized MC strategy is iterated in as many stages as allowed by the input set, until no further information can be extracted from an inconclusive result. Within each stage of this measurement our confidence in identifying the input states is the highest possible, although it decreases from one stage to the next. In addition, the more stages we accomplish within the maximum allowed, the higher will be the probability of correct identification. We will discuss an explicit example of the optimal SMC measurement applied in the discrimination among four symmetric qutrit states and propose an optical network to implement it.Comment: 14 pages, 4 figures. Published versio

    Infinite Matrix Products and the Representation of the Matrix Gamma Function

    Get PDF
    We introduce infinite matrix products including some of their main properties and convergence results. We apply them in order to extend to the matrix scenario the definition of the scalar gamma function given by an infinite product due to Weierstrass. A limit representation of the matrix gamma function is also provided
    • …
    corecore