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Abstract
We present a method for preparing arbitrary pure states of spatial qudits, namely, D-dimensional
( ⩾D 2) quantum systems carrying information in the transverse momentum and position of
single photons. For this purpose, a set of D slits with complex transmission are displayed on a
spatial light modulator (SLM). In a recent work we have shown a method that requires a single
phase-only SLM to control independently the complex coefficients which define the quantum
state of dimension D. The amplitude information was codified by introducing phase gratings
inside each slit, and the phase value of the complex transmission was added to the phase
gratings. After a spatial filtering process, we obtained in the image plane the desired qudit state.
Although this method has proven to be a good alternative to compact the previously reported
architectures, it presents some features that could be improved. In this paper we present an
alternative scheme to codify the required phase values that minimizes the effects of temporal
phase fluctuations associated to the SLM where the codification is carried out. In this scheme, the
amplitudes are set by appropriate phase gratings addressed at the SLM, while the relative phases
are obtained by a lateral displacement of these phase gratings. We show that this method
improves the quality of the prepared state and provides very high fidelities of preparation for any
state. An additional advantage of this scheme is that a complete π2 modulation is obtained by
shifting the grating by one period; hence the encoding is not limited by the phase modulation
range achieved by the SLM. Numerical simulations, that take into account the phase fluctuations,
show high fidelities for thousands of qubit states covering the whole Bloch sphere surface.
Similar analyses are performed for qudits with D = 3 and D = 7.

Keywords: quantum information, optical processors, correlators, modulators, gratings

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the main challenges in the field of quantum infor-
mation science is the ability to generate, modify, and measure
the quantum systems which are the information carriers in
quantum information processing and computing protocols [1].
In this context, photons are the natural choice for

communications, since they are easily transportable, slowly
affected by decoherence, and have several degrees of freedom
to encode information [2]. Among the feasible degrees of
freedom, those that allow one to codify quantum systems of
high dimensions, such as orbital angular momentum [3–5]
and longitudinal momentum [6], have attracted particular
interest. Another typical encoding are the so-called spatial
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qudits, namely, D-dimensional ( ⩾D 2) quantum systems
carrying information in the discretized transverse momentum
and position of single photons [7, 8]. In the simplest
approach, this discretization is achieved when the photons are
made to pass through an aperture with D slits which sets the
qudit dimension [9]. Due to this simplicity, spatial qudits
enable one to work in high dimensions without cumbersome
optical setups. For that reason they have drawn interest for
miscellaneous applications such as quantum information
protocols [10], quantum games [11], quantum algorithms
[12], and quantum key distribution [13]. Most of those
applications have benefited from the recent developments on
the control of spatial qudits based on the technology of
electrically addressed spatial light modulators (SLMs). SLMs
have dramatically simplified and broadened the range of
operations that can be implemented in real time on spatial
qudits for state preparation, transformation, and measurement
[14–17].

Initially, Lima et al [15] have shown that by imaging the
output beam of an amplitude-only SLM onto a phase-only
SLM, one may obtain complete and independent control of
the amplitude and phase of the complex coefficients that
define the qudit state. Therefore, this scheme requires two
SLMs at each link of the setup (preparation, transformations,
and measurements) in order to implement arbitrary operations
at each one. Besides being costly in terms of optical resour-
ces, this approach entails two drawbacks: (i) the overall dif-
fraction efficiency at each link is very low, and (ii) in order to
avoid even more losses, the image of the first SLM must
match the second one pixel by pixel, which is difficult in
practice. In a recent letter [16], we presented a proof-of-
principle demonstration of a method which proposed the use
of a single phase-only SLM to control independently the
amplitude and phase of the state coefficients. This method is,
less costly; offers a much higher diffraction efficiency (we
estimated a 10 times higher efficiency), which is relevant
when working with single photon sources; and does not
require an optical system for projecting the image of an SLM
onto a second one in order to obtain the complex modulation.
Among the different techniques to represent a complex
function in a single SLM [18–20], our method follows the
proposals of [21, 22] for encoding amplitude and phase
information onto a phase-only SLM. To this end, phase dif-
fraction gratings were displayed in those zones corresponding
to the slits. The desired amplitude of the complex coefficients
was obtained by controlling the amount of light diffracted on
the first order, which is a function of the phase modulation
depth of the grating. The phase of the complex coefficients,
which defines the required relative phase, was achieved by
adding a constant phase value to the grating. The required
complex light distribution was obtained after filtering the first
diffracted order in the Fourier plane. We shall refer to this
method as the phase–addition (PA) method.

Although the PA method gives, on average, good fide-
lities of preparation for spatial qubits and qudits of dimension
at least up to 7, we observed that many of the prepared states
had their fidelities reduced under the same experimental
conditions for state preparation and characterization. In that

paper [16], we pointed out that this effect was possibly due to
temporal phase fluctuations of the used SLM, which was
based on liquid crystal on silicon (LCoS) technology. In fact,
LCoS may lead to a flicker in the optical beam because of the
digital addressing scheme (pulse width modulation) which
introduces, among other undesirable effects, those phase
fluctuations [23, 24] that affect the quality of the encoded
state. This spurious effect will be amplified as the number of
SLMs in a given setup increases, so it is desirable to eliminate
or at least minimize it.

In this paper we first analyze, by numerical simulation,
the effects of the phase fluctuations on the quality of the states
prepared by the PA method and compare the results with the
experimental ones shown in the previous work. Our results
corroborate the conjecture that those fluctuations are primarily
responsible for the reduction of the fidelities. After that, we
propose an alternative scheme of encoding spatial qudits that
minimizes those effects and, consequently, improves the
quality of the preparation. In this scheme, the amplitudes of
the slits also are controlled by means of blazed gratings, but
the values of the phases of the state coefficients are obtained
by performing lateral displacements of the gratings instead of
by adding a constant phase. In this way, the required phase is
controlled only by the grating position, which is not affected
by phase fluctuations. We shall refer to this method as the
grating–displacement (GD) method. Besides improving the
preparation, the new encoding scheme is more flexible than
the previous one regarding the phase modulation range
achieved by the SLM. The PA method requires an SLM with
a phase modulation of at least π2 , while the GD method is not
limited by this condition, since a complete π2 modulation is
obtained by shifting the grating by one period. This fact is
important, especially when long wavelengths (usually near
IR), such as those obtained by parametric down-conversion
[25–28], are used. The performance of the GD method is
analyzed by simulating the preparation of arbitrary states and
their tomographic reconstruction. We report the results
obtained for thousands of qubit states covering the whole
Bloch sphere surface and spatial qudits of dimension D = 3
and D = 7. By studying the fidelities of preparation, we show
that the GD method overcomes the PA one.

2. The grating-displacement method

The encoding process for the generation of pure states of
spatial qudits can be explained as follows. When a paraxial
and monochromatic single-photon field is transmitted through
an aperture described by a complex transmission function
A x( ), its state, assumed here to be pure, is transformed as

∫ ∫Ψ ψ ψ= ⟹ Ax x x x x x xd ( ) d ( ) ( ) , (1)
A x( )

where = x yx ( , ) is the transverse position coordinate and
ψ x( ) is the normalized transverse probability amplitude for
this state; i.e., ∫ ψ =x xd | ( )| 12 . Now, let us consider that
A x( ) is an array of ⩾D 2 rectangular slits of width a2 , period
d and length ≫L a d( , ), where each slit ℓ has a transmission
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amplitude βℓ. Thus, A x( ) will be given by
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where η = + −ℓ D( 1) 2ℓ . Without loss of generality and for
simplicity, we will assume that ψ x( ) is constant across the
region of the slits. Hence, the state of the transmitted photon
in (1) will be [7]

∑ψ β=
=

−

ℓ˜ , (3)
ℓ

D

ℓ
0

1

where β β β= ∑ =
−˜ | |ℓ ℓ j

D
j0

1 2 , and 〉ℓ| denotes the state of the

photon passing through the slit ℓ.
As we have shown in [16], in order to prepare arbitrary

states of the form (3) with a single phase-only SLM, a phase
one-dimensional diffraction grating is displayed on the dif-
ferent regions of the SLM, each of them corresponding to a
particular slit. In this work, a blazed phase profile is selected
to achieve the maximum diffraction efficiency in the first
order, which can be expressed as [29]

ϵ
φ
π

= −⎜ ⎟⎛
⎝

⎞
⎠sinc 1

2
, (4)1

2 0

where φ0 is the phase modulation depth and
π π=u u usinc( ) sin ( ) ( ). When φ π= 20 , the first order effi-

ciency has a maximum value of 100%. By selecting another
value for φ0, it is possible to modulate the amount of light
diffracted on the order and consequently the amplitude of
each slit. Equation (4) corresponds to an ideal blazed profile
with continuous modulation. Nevertheless, given that the
representation of the grating period is carried out through a
finite number of pixels, this imposes a discretization in the
phase levels used to generate the blazed profile. Thus if N is
the number of quantization levels, the maximum efficiency
value will be assigned to the maximum amplitude of the slit
coefficients; i.e., β =| ˜ | 1ℓ corresponds to
φ π= − ×N N( 1) 20 . Other amplitude values will corre-
spond to other values of φ0 , which are obtained from (4). If
the employed SLMs do not reach 2π phase modulation, then
the relative slit amplitudes should be recalculated with respect
to the maximum efficiency achieved. In order to avoid the
introduction of additional phases in the encoding process, the
phase gratings should be designed with zero mean value.
However, as the SLM can only display positive phase values,
the gratings are generated with a mean value equal to half of
the maximum phase modulation depth, which is

π− ×N N( 1) for a blazed grating.
Let us now describe the GD method to control the phase

of the complex coefficients, βarg( ˜ )ℓ , in (3). It can be under-
stood by analyzing the transfer function of the grating. If it is
assumed that when the grating is centered at x = 0 its phase
value is zero, the transfer function of the slit ℓ in the far field

can be written as:

∑= − π
T x t( ) e , (5)ℓ

n

n
xni p

2

where tn is the amplitude of the nth diffraction order, x is the
position along the grating, and p is the grating period, both
measured in pixel units. A lateral displacement of the grating
by a distance of δℓ pixels from x = 0 introduces a phase shift

ϕ π δ= n

p

2
(6)ℓn ℓ

in the nth order, since the transfer function now is given by

∑ ∑δ− = =δ δ− − −π π π( )T x t te e e . (7)( )
ℓ ℓ

n

n
x n

n

n
xn ni i ip ℓ p p ℓ

2 2 2

By selecting the first diffraction order to obtain the required
complex modulation, the transfer function of the grating will
be

δ− = δ− π π( )T x t e e , (8)ℓ ℓ
x(1)

1
i ip p ℓ
2 2

and the phase shift introduced by the translation is
ϕ πδ= p2ℓ ℓ1 . When the maximum amplitude t1 is normal-
ized, regardless of what happens in the other diffraction
orders, its value coincides with ϵ1 in (4).

We will show in the next sections that as the phase of the
complex coefficients is determined by the grating position, its
value is almost unaffected by phase fluctuations.

3. Numerical simulations for state preparation

3.1. Proposed experimental setup

In order to analyze the performance of both PA and GD
encoding methods against the variation of the different
parameters of the SLM (phase fluctuation levels, number of
pixels used to represent a grating period, etc.), we carried out
numerical simulations of a realistic optical setup designed to
prepare and characterize spatial qudit states. The proposed
experimental setup is depicted in figure 1. A given source
generates a single-photon field in the pure state given by the
left part of (1). As mentioned earlier, we assume that the
transverse probability amplitude ψ x( ) is constant across the
region where the slits are displayed in the SLM. In the upper
part of the setup, used for state preparation, a phase-only SLM
(SLM1) is addressed with a phase mask—either by the PA or
GD method—corresponding to the spatial qudit state intended
to be prepared. SLM1 is placed in the front focal plane of lens
L1, and an iris diaphragm is placed at its back focal plane in
order to filter the first diffracted order which carries the
required information [16]. In the lower part of the setup, used
to reconstruct the quantum states by tomography, the Fourier
transform of the first diffracted order is projected onto a
second SLM (SLM2) and placed at the back focal plane of
L2. SLM2 is used to encode the measurement bases employed
to perform the tomographic process as described in [15]. A
single pixel detector is placed at the Fourier transform plane
of SLM2, in the center of its first diffraction order (x = 0).
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This detector registers the single count rates that, after nor-
malization, give us the probabilities to reconstruct the states.
It is important to note that with this configuration it is possible
to perform arbitrary projections of the input state without the
need to carry on measurements in the near field. In this way,
the optical setup remains unchanged. In particular, we per-
form projections onto the informational complete set of a
mutually unbiased basis [30, 31], following the experiment
reported in [15]. Finally, we apply the maximum likelihood
technique to obtain the best state estimation consistent with
the requirements of a physical state [32, 33].

3.2. Model for temporal phase fluctuations

As mentioned previously, reflective SLMs, such as LCoSs,
are usually employed to obtain pure phase modulation. In
these displays, a high-frequency series of binary pulses,
known as an addressing sequence, leads to the desired gray-
level representation. Unlike analogue drive schemes, which
need to control the applied voltages carefully, the digital drive
schemes are stable and offer a repeatable performance. The
sequences are conformed by a train of binary and equally
weighted bit planes which differ in sequence length and
addressable phase levels. It is assumed that the limited visc-
osity of the liquid crystal means that the addressing frequency
cannot be resolved, and, in this way, the desired gray level is
obtained through the effectively analogue liquid crystal
molecule position. Nevertheless, the digital addressing
scheme produces a superimposed modulation (flicker) with a
frequency that depends on the employed sequence. In many
devices the digital addressing sequence can be programmed.
Shorter sequences offer the possibility a of higher repetition

rate in a frame period, which partially compensates the pro-
blem of the low viscosity and leads to a reduction in the
flicker amplitude; however, the number of addressable phase
levels is lower in these cases [34]. In a previous paper
[23, 35], a simple model has been proposed to describe the
phase fluctuations (flicker) that are associated with these
devices. Although the exact shape of the perturbation varies
from one SLM to another, and depends on the pulse width
modulation sequence used to address the electrical signal and
the selected gray level, a suitable approximation that
describes the general behavior is a triangular phase fluctuation
whose height increases linearly with the phase value.
According to the selected sequence, the phase fluctuations can
reach values as high as 120% of the average phase value [24].
Therefore, to illustrate their effects on each method (PA and
GD), we chose different amplitudes of fluctuation, corre-
sponding to intermediate sequences, to perform the numerical
simulations. We have considered phase fluctuations ranging
from 20–60% of the average phase value. As an example, a
model for a typical temporal fluctuation is shown in figure 2,
where the amplitudes’ fluctuation is 20% of the average phase
value.

It was noted through the numerical simulations that the
influence of the synchronization between the temporal signals
sent to both modulators (SLMs 1 and 2 in figure 1) on the
final result is irrelevant. As a consequence, we have decided
to consider the second SLM, employed to perform the
tomographic projections, as a device without fluctuations and
to transfer the phase fluctuations of both elements to the first
SLM used to prepare the state.

In order to validate the mentioned assumptions and the
proposed model, we compared the experimental results
obtained in [16] with the corresponding numerical simulation.
To this end, we used the same setup and encoding scheme
(PA method) of the previous work, considering the case of a
blazed grating. Here and in the following section, we quantify
the quality of the preparation process with the fidelity

ψ ρ ψ≡ 〈 〉F | ˆ | between the state intended to be prepared, ψ〉| ,
and the density matrix of the state actually prepared and
reconstructed by tomography, ρ̂. Ideally, it is desirable to

Figure 1. Proposed experimental setup to simulate the preparation
and characterization of spatial qudit states with a single phase-only
SLM subjected to temporal phase fluctuations. BS: beam splitter; L:
lens; SLM: reflective phase-only spatial light modulator; f: focal
length of the lenses. The insets show examples of phase masks
addressed at the SLMs for state preparation (top) and tomography
(bottom).

Figure 2. Model for the temporal fluctuations used in the numerical
simulations. Here, the different curves correspond to different phase
modulations addressed on the SLM, when the amplitudes’ fluctua-
tion is 20% of the average phase value.
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have F = 1. The Bloch spheres showing the fidelities of
preparation of spatial qubits are shown in figure 3. The color
map goes from white, for ideal fidelity F = 1, to black for the
minimum obtained value. Figure 3(a) corresponds to the
experimental results of [16], and figure 3(b) corresponds to
the results obtained by numerical simulation. Although the
experimental results show a region of low fidelities around
ϕ π= that are not reproduced by the simulation, the simi-
larity between them is apparent in all other regions of the
Blochʼs sphere. This slight difference between both results
arises from the fact that the model used to simulate the
temporal fluctuations is just a first order approximation.
Besides, the aim of this study is to compare the performance
of both encoding methods under phase fluctuations and not to
exactly reproduce its shape.

4. Results

As mentioned above, it is expected that the proposed
encoding method (GD) be barely affected by phase fluctua-
tions, since the phase of the complex coefficients is deter-
mined by the grating positions, which are not influenced by
those fluctuations. Nevertheless, a possible drawback is that,
in principle, there are fewer available phase levels than in the
PA method. In the latter, the available phase values are
determined by the digital sequence used to address the LCoS,
whereas in the GD method, the phase values are quantized by
the number of pixels used to represent a grating period, i.e.,
the minimum phase shift is ϕ π= p2 . We will show here that
for a sufficiently large value of p, this drawback has smaller
effects than the phase fluctuations in the PA method.

Considering spatial qubits, let us see how the choice of
the grating period p affects the quality of the preparation. For
blazed gratings with p = 4, 8, and 16 pixels, we simulated the
preparation of 2112 states uniformly distributed over the
Bloch sphere surface. The results are shown in figures 4(a)–
(c). In these figures, a different color map to that of figure 3
was chosen to allow visualizing the loss of fidelity between
the different prepared states from F = 1 (white) to the mini-
mum obtained value (black).

For each p, we see that a fidelity decrease with a periodic
distribution that depends on how far or close is the phase of
the quantum state from the phase value that we are able to
represent. This decrease is due to the phase quantization
rather than the phase fluctuations introduced by the LCoS,
and, as expected, it becomes smaller as p increases.
Figure 4(a) shows the fidelities obtained with a 4-pixel grating
period. In figure 4(b), with an 8-pixel grating period, the
results are much better, and for p = 16 in figure 4(c), the
obtained fidelities are excellent. In a realistic scenario, a
grating with a 16-pixel period provides high diffraction effi-
ciency and enables the first diffraction order to be placed far
away from the 0th order on the Fourier plane. In this way it
can be easily filtered, and the light distribution is not cor-
rupted by unwanted noise. Gratings with larger periods will
improve the phase resolution, but the first and 0th order will
be so close that it would be difficult to perform the filtering.
Hence, to compare the performance of both methods (PA and
GD) under fluctuations on the SLMs, we have chosen a
grating with a 16-pixel period.

Figure 5 shows, for both methods (PA, first column; and
GD, second column), the fidelities of preparation for qubit
states considering three different phase fluctuation ampli-
tudes: 20% (figures 5(a) and (b)), 30% (figures 5(c) and (d))
and 60% (figures 5(e) and (f)) of the average phase value. As
in the previous cases, we have chosen a different color map
from those of figures 3 and 4. The mean value and standard
deviation were calculated from the collection data obtained
from the simulation. For each phase fluctuation amplitude, the
GD method achieves higher average values of fidelity, and,
unlike the PA method, there are not significant variations of
the fidelity between different states on the Bloch sphere,
which is reflected in a smaller standard deviation. Moreover,
increasing the phase fluctuations amplitude results in lower
reconstruction fidelities for the PA method with respect to the
GD method. Therefore, from these results it is clear that while
the PA method is strongly dependent on the phase fluctuation
amplitude, the GD method remains almost unaffected.

Two thousand arbitrary pure states corresponding to
spatial qudits of higher dimension have been prepared. The
histograms shown in figure 6 represent the number of states of

Figure 3. Bloch spheres showing the fidelities of preparation of spatial qubit states using the phase-addition method: (a) experimental results
from [16] of 561 states uniformly distributed on the surface, and (b) numerical simulations of the preparation of 2112 states, taking into
account our model of phase fluctuations in the SLM (see figure 2). The latitude θ π∈ [0, ] and the longitude ϕ π π∈ −( , ] parametrize an
arbitrary pure state ψ θ θ〉 = 〉 + 〉ϕ| cos ( 2)|0 e sin ( 2)|1i on the sphere surface.
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dimension D = 3 whose fidelity values belong to a particular
interval. Figures 6(a) and (b) correspond, respectively, to the
results obtained with the PA and GD encoding method for
phase fluctuations of 20% of the average phase value.
Figures 6(c) and (d) show the equivalent results for phase
fluctuations of 30%, and figures 6(e) and (f) the same for
fluctuations of 60%. The results for qudits of dimension D = 7
are shown in figure 7. Again, the left column represents the

histograms obtained from the PA method, and the right col-
umn to those obtained from the GD method. Figures 7(a) and
(b) correspond to phase fluctuations of 20%, figures 7(c) and
(d) to fluctuations of 30%, and figures 7(e) and (f) to phase
fluctuations of 60%. In a similar way as in the case of a
Hilbert space of dimension D = 2, the results obtained for
dimensions D = 3 and D = 7 show that the GD method leads
to an increase of the mean fidelity and to a diminution of the

Figure 4. Bloch spheres showing the fidelities of preparation of spatial qubit states using the grating-displacement method. All graphics were
obtained from numerical simulations with 4 (a), 8 (b), and 16 (c) displacements of the diffraction grating.

Figure 5. Bloch spheres showing the fidelities of preparation of 2112 spatial qubit states using the PA (first column) and GD (second column)
method. The corresponding phase fluctuation amplitudes are: 20% (first row), 30% (second row), and 60% (third row) of the average phase
value. The insets show the mean fidelity and its standard deviation.
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standard deviation, which agrees with the fact that the
encoding applied in the preparation and reconstruction pro-
cesses is almost not affected by phase fluctuations.

5. Conclusions

In this work we have proposed a new method to encode
spatial qudit states using an LCoS as a single phase-only
spatial light modulator. In this method, the complex trans-
missions of the D slits that are used to represent the quantum
state are encoded by means of phase diffraction gratings. The
amplitudes are driven through the phase modulation depth of
the grating, and the required phases are controlled by per-
forming lateral translations of the grating. Given that the
phase values are determined by the grating position, the
method is almost unaffected by the phase fluctuations asso-
ciated to LCoSs.

We have analyzed the performance of the proposed
method by numerical simulations, where we evaluated the
preparation of arbitrary states in a first SLM and its

tomographic reconstruction, using projective measurements
onto a pre-fixed basis, in a second SLM. The proposed
method (GD) has been compared with a previous one in [16]
where the required phases were controlled by adding a con-
stant phase value to the grating (PA). This has been done
under different phase fluctuation intensities for qubits and for
qudits of dimension D = 3 and D = 7. In all cases the results
of the simulations have shown a greater robustness of the GD
method against phase fluctuations when comparing with the
PA method. In addition, the GD method offers wider
experimental flexibility, allowing one to use SLMs with a
maximum phase modulation below π2 . This feature is
important, especially when long wavelengths (usually near
IR), as those of photons obtained by parametric down-con-
version, are used.

Therefore, the method proposed here may become a
valuable tool for experiments based on spatial qudits, espe-
cially when one has to assemble two or more SLMs (e.g., for
state preparation and transformations) subjected to phase
fluctuations. By using the GD method, one minimizes the

Figure 6. Occurrence fidelities of preparation of 2000 spatial qudit states, of dimension D = 3, using the PA (first column) and GD (second
column) method. The corresponding phase fluctuation amplitudes are: 20% (first row), 30% (second row), and 60% (third row) of the average
phase value. The insets show the mean fidelity and its standard deviation.
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unwanted effects caused by the fluctuations and, conse-
quently, improves the realization of the protocol of interest.
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