161 research outputs found
Indicators for comparing performance of irrigated agricultural systems
Irrigated farming / Irrigation systems / Indicators / Performance indexes / Financing / Crop production / Water demand / Water requirements / Prices
Strategy for the identification of micro-organisms producing food and feed products : bacteria producing food enzymes as study case
Recent European regulations require safety assessments of food enzymes (FE) before their commercialization. FE are mainly produced by micro-organisms, whose viable strains nor associated DNA can be present in the final products. Currently, no strategy targeting such impurities exists in enforcement laboratories. Therefore, a generic strategy of first line screening was developed to detect and identify, through PCR amplification and sequencing of the 16S-rRNA gene, the potential presence of FE producing bacteria in FE preparations. First, the specificity was verified using all microbial species reported to produce FE. Second, an in-house database, with 16S reference sequences from bacteria producing FE, was constructed for their fast identification through blast analysis. Third, the sensitivity was assessed on a spiked FE preparation. Finally, the applicability was verified using commercial FE preparations. Using straightforward PCR amplifications, Sanger sequencing and blast analysis, the proposed strategy was demonstrated to be convenient for implementation in enforcement laboratories
Can global precipitation datasets benefit the estimation of the area to be cropped in irrigated agriculture?
The area to be cropped in irrigation districts needs to be
planned according to the available water resources to avoid agricultural
production loss. However, the period of record of local hydro-meteorological
data may be short, leading to an incomplete understanding of climate
variability and consequent uncertainty in estimating surface water
availability for irrigation area planning. In this study we assess the
benefit of using global precipitation datasets to improve surface water
availability estimates. A reference area that can be irrigated is established
using a complete record of 30 years of observed river discharge data. Areas
are then determined using simulated river discharges from six local
hydrological models forced with in situ and global precipitation datasets
(CHIRPS and MSWEP), each calibrated independently with a sample of 5 years
extracted from the full 30-year record. The utility of establishing the
irrigated area based on simulated river discharge simulations is compared
against the reference area through a pooled relative utility value (PRUV).
Results show that for all river discharge simulations the benefit of choosing
the irrigated area based on the 30 years of simulated data is higher compared
to using only 5 years of observed discharge data, as the statistical spread
of PRUV using 30 years is smaller. Hence, it is more beneficial to calibrate
a hydrological model using 5 years of observed river discharge and then to
extend it with global precipitation data of 30 years as this weighs up
against the model uncertainty of the model calibration.</p
Sustainable intensification of agriculture for human prosperity and global sustainability
There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be defined-at all scales-in the context of rapidly rising global environmental changes in the Anthropocene, while focusing on eradicating poverty and hunger and contributing to human wellbeing. The criteria and approach we propose, for a paradigm shift towards sustainable intensification of agriculture, integrates the dual and interdependent goals of using sustainable practices to meet rising human needs while contributing to resilience and sustainability of landscapes, the biosphere, and the Earth system. Both of these, in turn, are required to sustain the future viability of agriculture. This paradigm shift aims at repositioning world agriculture from its current role as the world's single largest driver of global environmental change, to becoming a key contributor of a global transition to a sustainable world within a safe operating space on Earth
How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies
Traditionally, people have inhabited places with ready access to fresh water.
Today, over 50% of the global population lives in urban areas, and water
can be directed via tens of kilometres of pipelines. Still, however, a large
part of the world's population is directly dependent on access to natural
freshwater sources. So how are inhabited places related to the location of
freshwater bodies today? We present a high-resolution global analysis of how
close present-day populations live to surface freshwater. We aim to increase the
understanding of the relationship between inhabited places, distance to surface
freshwater bodies, and climatic characteristics in different climate zones and
administrative regions. Our results show that over 50% of the
world's population lives closer than 3 km to a surface freshwater body, and
only 10% of the population lives further than 10 km away. There are,
however, remarkable differences between administrative regions and climatic
zones. Populations in Australia, Asia, and Europe live closest to water.
Although populations in arid zones live furthest away from freshwater bodies in
absolute terms, relatively speaking they live closest to water considering the
limited number of freshwater bodies in those areas. Population distributions in
arid zones show statistically significant relationships with a combination of
climatic factors and distance to water, whilst in other zones there is no
statistically significant relationship with distance to water. Global studies on
development and climate adaptation can benefit from an improved understanding of
these relationships between human populations and the distance to fresh
water
Managing uncertainty: a review of food system scenario analysis and modelling
Complex socio-ecological systems like the food system are unpredictable, especially to long-term horizons such as 2050. In order to manage this uncertainty, scenario analysis has been used in conjunction with food system models to explore plausible future outcomes. Food system scenarios use a diversity of scenario types and modelling approaches determined by the purpose of the exercise and by technical, methodological and epistemological constraints. Our case studies do not suggest Malthusian futures for a projected global population of 9 billion in 2050; but international trade will be a crucial determinant of outcomes; and the concept of sustainability across the dimensions of the food system has been inadequately explored so far. The impact of scenario analysis at a global scale could be strengthened with participatory processes involving key actors at other geographical scales. Food system models are valuable in managing existing knowledge on system behaviour and ensuring the credibility of qualitative stories but they are limited by current datasets for global crop production and trade, land use and hydrology. Climate change is likely to challenge the adaptive capacity of agricultural production and there are important knowledge gaps for modelling research to address
- …