1,527 research outputs found

    Dynamic Radio-Frequency Transverse Susceptibility in Magnetic Nanoparticle Systems

    Full text link
    A novel resonant method based on a tunnel-diode oscillator (TDO) is used to study the dynamic transverse susceptibility in a Fe nanoparticle system. The magnetic system consists of an aggregate of nanometer-size core (Au)-shell (Fe) structure, synthesized by reverse micelle methods. Static and dynamic magnetization measurements carried out in order to characterize the system reveal a superparamagnetic behavior at high temperature. The field-dependent transverse susceptibility at radio-frequencies (RF), for different temperatures reveals distinct peak structure at characteristics fields (H_k, H_c) which changes with temperature. It is proposed that relaxation processes could explain the influence of the temperature on the field dependence of the transverse susceptibility on the MI.Comment: 3 pages, 2-column, 3 figures, To be published in J. Appl. Phys. 2000 (44th Annual MMM proceedings

    Integral Relaxation Time of Single-Domain Ferromagnetic Particles

    Full text link
    The integral relaxation time \tau_{int} of thermoactivating noninteracting single-domain ferromagnetic particles is calculated analytically in the geometry with a magnetic field H applied parallel to the easy axis. It is shown that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the Fokker-Planck equation \Lambda_1 at low temperatures, starting from some critical value of H, is the consequence of the depletion of the upper potential well. In these conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier and intrawell relaxation processes.Comment: 8 pages, 3 figure

    XAX: a multi-ton, multi-target detection system for dark matter, double beta decay and pp solar neutrinos

    Full text link
    A multi-target detection system XAX, comprising concentric 10 ton targets of 136Xe and 129/131Xe, together with a geometrically similar or larger target of liquid Ar, is described. Each is configured as a two-phase scintillation/ionization TPC detector, enhanced by a full 4pi array of ultra-low radioactivity Quartz Photon Intensifying Detectors (QUPIDs) replacing the conventional photomultipliers for detection of scintillation light. It is shown that background levels in XAX can be reduced to the level required for dark matter particle (WIMP) mass measurement at a 10^-10 pb WIMP-nucleon cross section, with single-event sensitivity below 10^-11 pb. The use of multiple target elements allows for confirmation of the A^2 dependence of a coherent cross section, and the different Xe isotopes provide information on the spin-dependence of the dark matter interaction. The event rates observed by Xe and Ar would modulate annually with opposite phases from each other for WIMP mass >~100 GeV/c^2. The large target mass of 136Xe and high degree of background reduction allow neutrinoless double beta decay to be observed with lifetimes of 10^27-10^28 years, corresponding to the Majorana neutrino mass range 0.01-0.1 eV, the most likely range from observed neutrino mass differences. The use of a 136Xe-depleted 129/131Xe target will also allow measurement of the pp solar neutrino spectrum to a precision of 1-2%.Comment: 16 pages with 17 figure

    Growth and magnetism of self-organized arrays of Fe(110) wires formed by deposition on kinetically grooved W(110)

    Full text link
    Homoepitaxy of W(110) and Mo(110) is performed in a kinetically-limited regime to yield a nanotemplate in the form of a uniaxial array of hills and grooves aligned along the [001] direction. The topography and organization of the grooves were studied with RHEED and STM. The nanofacets, of type {210}, are tilted 18° away from (110). The lateral period could be varied from 4 to 12nm by tuning the deposition temperature. Magnetic nanowires were formed in the grooves by deposition of Fe at 150°C on such templates. Fe/W wires display an easy axis along [001] and a mean blocking temperature Tb=100KComment: Proceedings of ECOSS 2006 (Paris

    Dynamics of allosteric transitions in GroEL

    Full text link
    The chaperonin GroEL-GroES, a machine which helps some proteins to fold, cycles through a number of allosteric states, the TT state, with high affinity for substrate proteins (SPs), the ATP-bound RR state, and the Râ€Čâ€ČR^{\prime\prime} (GroEL−ADP−GroESGroEL-ADP-GroES) complex. Structures are known for each of these states. Here, we use a self-organized polymer (SOP) model for the GroEL allosteric states and a general structure-based technique to simulate the dynamics of allosteric transitions in two subunits of GroEL and the heptamer. The T→RT \to R transition, in which the apical domains undergo counter-clockwise motion, is mediated by a multiple salt-bridge switch mechanism, in which a series of salt-bridges break and form. The initial event in the R→Râ€Čâ€ČR \to R^{\prime\prime} transition, during which GroEL rotates clockwise, involves a spectacular outside-in movement of helices K and L that results in K80-D359 salt-bridge formation. In both the transitions there is considerable heterogeneity in the transition pathways. The transition state ensembles (TSEs) connecting the TT, RR, and Râ€Čâ€ČR^{\prime\prime} states are broad with the the TSE for the T→RT \to R transition being more plastic than the R→Râ€Čâ€ČR\to R^{\prime\prime} TSE. The results suggest that GroEL functions as a force-transmitting device in which forces of about (5-30) pN may act on the SP during the reaction cycle.Comment: 32 pages, 10 figures (Longer version than the one published

    Increased Expression of Tissue Factor and Receptor for Advanced Glycation End Products in Peripheral Blood Mononuclear Cells of Patients With Type 2 Diabetes Mellitus with Vascular Complications

    Get PDF
    The aim of the study was to determine the correlation between the expression of tissue factor (TF) and the receptor for advanced glycation end products (RAGEs) and vascular complications in patients with longstanding uncontrolled type 2 diabetes (T2D). TF and RAGE mRNAs as well as TF antigen and activity were investigated in 21 T2D patients with and without vascular complications. mRNA expression was assessed by reverse transcriptase–polymerase chain reaction (RT-PCR) in nonstimulated and advanced glycation end product (AGE) albumin–stimulated peripheral blood mononuclear cells (PBMCs). TF antigen expression was determined by enzyme-linked immunosorbent assay (ELISA) and TF activity by a modified prothrombin time assay. Basal RAGE mRNA expression was 0.2 ± 0.06 in patients with complications and 0.05 ± 0.06 patients without complications (P = .004). Stimulation did not cause any further increase in either group. TF mRNA was 0.58 ± 0.29 in patients with complications and 0.21 ± 0.18 in patients without complications (P = .003). Stimulation resulted in a nonsignificant increase in both groups. Basal TF activity (U/106 PBMCs) was 18.4 ± 13.2 in patients with complications and 6.96 ± 5.2 in patients without complications (P = .003). It increased 3-fold in both groups after stimulation (P = .001). TF antigen (pg/106 PBMCs) was 33.7 ± 28.6 in patients with complications, 10.4 ± 7.8 in patients without complications (P = .02). Stimulation tripled TF antigen in both groups of patients (P = .001). The RAGE/TF axis is up-regulated inT2Dpatients with vascular complications as compared to patients without complications. This suggests a role for this axis in the pathogenesis of vascular complications in T2D

    A Spin-Mechanical Device for Detection and Control of Spin Current by Nanomechanical Torque

    Full text link
    We propose a spin-mechanical device to control and detect spin currents by mechanical torque. Our hybrid nano-electro-mechanical device, which contains a nanowire with a ferromagnetic-nonmagnetic interface, is designed to measure or induce spin polarized currents. Since spin carries angular momentum, a spin flip or spin transfer process involves a change in angular momentum--and hence, a torque--which enables mechanical measurement of spin flips. Conversely, an applied torque can result in spin polarization and spin current.Comment: 6 pages, 2 figure

    Evolution and stability of a magnetic vortex in small cylindrical ferromagnetic particle under applied field

    Full text link
    The energy of a displaced magnetic vortex in a cylindrical particle made of isotropic ferromagnetic material (magnetic dot) is calculated taking into account the magnetic dipolar and the exchange interactions. Under the simplifying assumption of small dot thickness the closed-form expressions for the dot energy is written in a non-perturbative way as a function of the coordinate of the vortex center. Then, the process of losing the stability of the vortex under the influence of the externally applied magnetic field is considered. The field destabilizing the vortex as well as the field when the vortex energy is equal to the energy of a uniformly magnetized state are calculated and presented as a function of dot geometry. The results (containing no adjustable parameters) are compared to the recent experiment and are in good agreement.Comment: 4 pages, 2 figures, RevTe

    Nanostratification of optical excitation in self-interacting 1D arrays

    Full text link
    The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization in dense material does not hold in finite groups of atoms, as we reported earlier [A. E. Kaplan and S. N. Volkov, Phys. Rev. Lett., v. 101, 133902 (2008)]. The uniformity is broken at sub-wavelength scale, where the system may exhibit strong stratification of local field and dipole polarization, with the strata period being much shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most fundamental case of one-dimensional arrays, and study nanoscale excitation of so called "locsitons" and their standing waves (strata) that result in size-related resonances and related large field enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging from long waves, to an extent reminiscent of ferromagnetic domains, -- to super-short waves, with neighboring atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest is the new kind of "hybrid" modes of excitation, greatly departing from any magnetic analogies. We also study differences between Ising-like near-neighbor approximation and the case where each atom interacts with all other atoms in the array. We find an infinite number of "exponential eigenmodes" in the lossless system in the latter case. At certain "magic" numbers of atoms in the array, the system may exhibit self-induced (but linear in the field) cancellation of resonant local-field suppression. We also studied nonlinear modes of locsitons and found optical bistability and hysteresis in an infinite array for the simplest modes.Comment: 39 pages, 5 figures; v2: Added the Conclusions section, corrected a typo in Eq. (5.3), corrected minor stylistic and grammatical imperfection
    • 

    corecore