71 research outputs found
Forecasting of daily precipitation occurrence in an altitudinal gradient in southern Ecuador using a weather generator
Precipitation forecast is fundamental for improving the management of water resources, for development projects and risk reduction. Due to its high variability, high quality rain forecasts are still a challenge. In the present study, a weather generator (WG) was used to study the quality of the forecast of daily rainfall occurrence. The WG was implemented using three variables as predictors: the binary variable precipitation occurrence of the previous day (Kt-1), the maximum and minimum temperatures of the previous day (Txt-1, Tnt-1, respectively); and two co-variables: monthly values of the observed Sea Surface Temperature Anomalies of the Regions 1+2 and 3.4 of El Niño-Southern Oscillation (Niño 1+2 and Niño 3.4 respectively). We found that the variables Kt-1, Tnt-1 and co-variable Niño 3.4 are those that improve the performance of the precipitation occurrence forecasting. There was a noticeable difference in the number of consecutive wet and dry spell days in the altitudinal gradient in a rainy period. We propose several hypotheses based on the use of WG, which allow the understanding of the functioning of the climate system and the improvement of the forecast of precipitation occurrence in a mountainous area
EFECTO DEL COEFICIENTE TEÓRICO DE DESCARGA DE VERTEDEROS SOBRE LA MEDICIÓN DE CAUDALES EN PEQUEÑOS RÍOS ANDINOS
Los Ecosistemas Andinos proveen importantes servicios hidrológicos para comunidades aguas abajo de los ríos. Debido
a esta importancia, se han realizado varios estudios hidrológicos en los últimos años, con énfasis en la identificación
de procesos hidrológicos e impactos de cambio de uso de la tierra. En estas investigaciones y para la operación de
pequeños proyectos de riego y agua potable, los ríos de montaña se han equipado con vertederos compuestos de pared
delgada para estimar los caudales. Para transformar el nivel de agua en caudal, las ecuaciones de los vertederos
emplean coeficientes de descarga teóricos, los cuales no necesariamente se ajustan a las condiciones reales de campo,
principalmente a la fluviomorfología del sitio y aspectos constructivos del vertedero, complicando sus mediciones.
Por ello, este estudio analiza el efecto de utilizar coeficientes teóricos en lugar de coeficientes ajustados en campo.
El estudio se realizó en 9 microcuencas (0;27;53km2) ubicadas en el Observatorio Ecohidrológico de Zhurucay, en
el páramo del sur del Ecuador. Para calibrar los coeficientes, se generaron curvas de descarga mediante mediciones
de dilución de sal y mecánicos. Los resultados revelaron que los coeficientes de descarga difieren de su valor teórico
hasta en un 15% para vertederos de sección triangular (DCvn) y hasta un 25% para sección rectangular (DCr). El
DCvn afecta 4 veces más en la estimación de caudales bajos y medios que el DCr en caudales altos. Por su parte, el
aforo por dilución de sal es más preciso para caudales medios y altos, pero en caudales bajos, este sobrestima un 10%.
En general, los resultados sugieren que es esencial ajustar los coeficientes en campo para evitar errores en diferentes
estudios hidrológicos./Andean ecosystems provide important hydrological services for downstream communities. Due to this importance,
several hydrological studies have been carried out in recent years, with emphasis on hydrological processes identification
and land use change impacts. In several studies, but also for the operation of small-scale irrigation and drinking
water projects, small streams have been equipped with compound, sharp-crested weirs for discharge estimation. To
transform the water level (stage) into a discharge (water rate), weir equations use theoretical discharge coefficients,
which do not necessarily apply under the actual field conditions, mainly site fluviomorphology and weir construction
aspects, introducing uncertainty in their measurements. Therefore, this study analyzes the effect of using theoretical
coefficients instead of adjusted coefficients in field. The study was conducted on 9 micro-catchments (0;27;53km2)
located in the Zhurucay Ecohydrological Observatory in the paramo of southern Ecuador. To calibrate the coefficients,
discharge curves were generated by mechanical and salt-dilution gauging methods. Results revealed that the
discharge coefficients differed from their theoretical value by up to 15% for triangular (V-notch) weir section (DCvn)
and by up to 41% for rectangular weir section (DCr). The DCvn affects 4 times more in low and medium discharges
estimation than DCvn in high discharges. On the other hand, salt-dilution method is more precise for medium and
high discharges, but at very low discharges, it overestimates discharge up to 10%. Overall, results suggest that it is
essential to calibrate the discharge coefficients in the field to avoid errors in hydrological studies
Rainfall and Cloud Dynamics in the Andes: A Southern Ecuador Case Study
Mountain regions worldwide present a pronounced spatiotemporal precipitation variability, which added to scarce monitoring networks limits our understanding of the generation processes involved. To improve our understanding of clouds and precipitation dynamics and cross-scale generation processes in mountain regions, we analyzed spatiotemporal rainfall patterns using satellite cloud products (SCP) in the Paute basin (900–4200 m a.s.l. and 6481 km2) in the Andes of Ecuador. Precipitation models, using SCP and GIS data, reveal the spatial extension of three regimes: a three-modal (TM) regime present across the basin, a bimodal (BM) regime, along sheltered valleys, and a unimodal (UM) regime at windward slopes of the eastern cordillera. Subsequently, the spatiotemporal analysis using synoptic information shows that the dry season of the BM regime during boreal summer is caused by strong subsidence inhibiting convective clouds formation. Meanwhile, in UM regions, low advective shallow cap clouds mainly cause precipitation, influenced by water vapor from the Amazon and enhanced easterlies during boreal summer. TM regions are transition zones from UM to BM and zones on the windward slopes of the western cordillera. These results highlight the suitability of satellite and GIS data-driven statistical models to study spatiotemporal rainfall seasonality and generation processes in complex terrain, as the Andes
COMPARACIÓN ENTRE PLUVIÓMETROS CUANTIFICA DIFERENCIAS EN EL MONITOREO DE LA PRECIPITACIÓN
Por décadas se ha trabajado para corregir las medidas de precipitación, sin embargo estos esfuerzos han sido escasos
en zonas tropicales montañosas. Cuatro pluviómetros de balancín (TB), con distinta resolución y comúnmente
utilizados en las montañas de los Andes, fueron comparados en este estudio: un DAVIS-RC-II, un HOBO-RG3-M, y
dos TE525MM (con y sin una pantalla Alter contra el viento). El desempeño de estos pluviómetros, instalados en el
Observatorio Ecohidrológico Zhurucay, sur del Ecuador, a 3780 m s.n.m., se evaluó en relación al sensor de mejor
resolución (0,1 mm), el TE525MM. El efecto de la intensidad de precipitación y condiciones del viento también se analizó
utilizando 2 años de datos. Los resultados revelan que (i) la precipitación medida por el TB de referencia es 5,6%
y 7,2% mayor que la de pluviómetros con resolución de 0,2 mm y 0.254 mm, respectivamente; (ii) la subestimación
de los sensores de menor resolución es mayor durante eventos de baja intensidad—una máxima diferencia de 11%
para intensidades 1 mm h1; (iii) intensidades menores a 2 mm h1, que ocurren el 75% del tiempo, no pueden ser
determinadas con exactitud para escalas menores a 30 minutos debido a la resolución de los pluviómetros, e.g. sesgo
absoluto > 10%; y (iv) el viento tiene un efecto similar en todos los sensores. Este análisis contribuye a mejorar la
exactitud y homogeneidad de las medidas de precipitación en los Andes mediante la cuantificación del rol clave de la
resolución de los pluviómetros.//Efforts to correct precipitation measurements have been ongoing for decades, but are scarce for tropical highlands.
Four tipping-bucket (TB) rain gauges with different resolution that are commonly used in the Andean mountain
region were compared-one DAVIS-RC-II, one HOBO-RG3-M, and two TE525MM TB gauges (with and without an
Alter-Type wind screen). The relative performance of these rain gauges, installed side-by-side in the Zhurucay Ecohydrological
Observatory, south Ecuador, at 3780 m a.s.l., was assessed using the TB with the highest resolution (0.1 mm)
as reference, i.e. the TE525MM. The effect of rain intensity and wind conditions on gauge performance was estimated
as well. Using 2 years of data, results reveal that (i) the precipitation amount for the reference TB is on average 5.6
to 7.2% higher than the rain gauges having a resolution of 0.2 mm and 0.254 mm respectively; (ii) relative underestimation
of precipitation from the gauges with coarser resolution is higher during low-intensity rainfall mounting to a
maximum deviation of 11% was observed for rain intensities 1 mm h1; (iii) precipitation intensities of 2 mm h1 or
less that occur 75% of the time cannot be determined accurately for timescales shorter than 30 minutes because of the
gauges’ resolution, e.g. the absolute bias is >10%; and (iv) wind has a similar effect on all sensors. This analysis contributes
to increase the accuracy and homogeneity of precipitation measurements throughout the Andean highlands,
by quantifying the key role of rain-gauge resolution
Dynamics of Precipitation Anomalies in Tropical South America
In this study, precipitation in Tropical South America in the 1931–2016 period is investigated by means of Principal Component Analysis and composite analysis of circulation fields.The associated dynamics are analyzed using the 20th century ERA-20C reanalysis. It is foundthat the main climatic processes related to precipitation anomalies in Tropical South America are: (1) the intensity and position of the South Atlantic Convergence Zone (SACZ); (2) El Niño SouthernOscillation (ENSO); (3) the meridional position of the Intertropical Convergence Zone (ITCZ), which is found to be related to Atlantic Sea Surface Temperature (SST) anomalies; and (4) anomalies in the strength of the South American Monsoon System, especially the South American Low-Level Jet (SALLJ). Interestingly, all of the analyzed anomalies are related to processes that operate from the Atlantic Ocean, except for ENSO. Results from the present study are in agreement with the state of the art literature about precipitation anomalies in the region. However, the added strength of the longer dataset and the larger study area improves the knowledge and gives new insights into how climate variability and the resulting dynamics are related to precipitation in Tropical South America
INTERACCIONES ENTRE ÍNDICE DE ÁREA FOLIAR, DENSIDAD DEL DOSEL Y PRECIPITACIÓN EFECTIVA DE UN BOSQUE DE POLYLEPIS RETICULATA UBICADO EN UN ECOSISTEMA DE PÁRAMO
La medición de la cobertura vegetal es fundamental para conocer qué porcentaje de la precipitación queda interceptada
sobre la misma. Las técnicas más utilizadas para medir la cobertura in situ son el índice de área foliar (IAF) y la
densidad del dosel (DD). Sin embargo, no se ha puesto atención en las diferencias registradas en el uso de las dos técnicas
ni cómo estas variables influyen sobre el balance hidrológico particularmente sobre la precipitación efectiva (PE).
Por tal motivo, el objetivo del estudio es evaluar la relación entre las mediciones de la cobertura vegetal realizadas
por los métodos de IAF y DD e identificar cómo se relacionan con la PE, importante para aplicaciones hidrológicas.
El estudio se desarrolló en un bosque de Polylepis reticulata de 15633 m2, ubicado en el Observatorio Ecohidrológico
Zhurucay, sur de Ecuador, en un rango altitudinal de 3765 a 3809 m s.n.m. El IAF se midió con el equipo CI-110 Plant
Canopy Imager y la DD con un densiómetro esférico, cubriendo un amplio rango de valores de cobertura de dosel.
Para medir la PE se instrumentó el sitio de estudio con 9 pluviógrafos. Los resultados indican que el IAF y DD son
en promedio 2,43 m2 m2 y 88%, respectivamente; cuya relación resulta ser significativa (R2 = 0,913; p< 0,05). La
PE media anual es de 773,2 mm, que tiende a disminuir con el incremento del IAF y DD; aunque su relación resulta
estadísticamente no significativa (valores p> 0,05). Este estudio muestra la importancia de caracterizar la cobertura
vegetal para entender la interacción con la PE.//The measurement of vegetation cover is fundamental to quantify the precipitation percentage intercepted by it. The
most widely techniques used to measure the cover in situ are the leaf area index (LAI) and the canopy density (CD).
However, no attention has been paid to the differences recorded in the use of the two techniques or how these variables
influence the hydrological balance on the throughfall (TF). For this reason, the objective of the study is to evaluate
the relationship between vegetation cover measurements conducted by the LAI and CD methods and to identify how
they relate with the TF, important for hydrological applications. The study was developed in a Polylepis reticulata forest
of 15633 m2, located at the Zhurucay Ecohydrological Observatory, south of Ecuador, in an altitudinal range of
3765 to 3809 m.a.s.l. The LAI was measured with the CI-110 Plant Canopy Imager equipment and CD with a spherical
densiometer, covering a wide range of canopy cover values. The study site was instrumented with 9 tipping-bucket
rain gauges to measure TF. The results indicate that LAI and CD averages are 2.43 m2 m2 y 88% respectively; whose
relationship is significant (R2 = 0.913; p< 0.05). Mean annual TF is 773.2 mm, which tends to decrease with the increase
of the LAI and CD; although, their relationship is not statistically significant (p-value> 0.05). This study shows
the importance of characterizing the vegetation cover to understand the interaction with TF
Hydrologic simulation of a neotropical alpine catchment influenced by conductive topsoils in the Ecuadorian Andes
Highly conductive topsoils in neotropical high-elevation grassland-dominated ecosystems, or so-called paramos in the Andean region, influence the local rainfall-runoff processes predominated by saturation-excess overland flow as the primary source of freshwater. The Soil and Water Assessment Tool (SWAT) model has shown limitations when applied to mountainous catchments with highly conductive soils that generate surface runoff as saturation-excess overland flow. In this study, we enhanced SWAT to simulate runoff as saturation-excess overland flow and examined the hydrological responses of an intensively monitored paramo catchment in Ecuador. The model setup considered a detailed representation of the hydro-physical properties of the soils at different depths, including high infiltration and lateral flow rates in the hillslopes and restricted groundwater interactions, a characteristic of the páramo catchments. SWAT reasonably reproduced the daily discharge during dry and wet periods and the cumulative occurrence of high and low flows. The performance metrics NSE, RSR, and PBIAS values during calibration/validation period were 0.86/0.84, 0.31/0.4, and −11.2/-7.58, respectively. The runoff ratio and partitioning of the total runoff into the lateral flow and surface runoff were physically meaningful. More significantly, SWAT was able to simulate saturation-excess overland flow, which is dominant compared to infiltration excess, and it is a distinctive characteristic of páramo catchments. Nevertheless, the model showed limitations in simulating low flows
Actual Evapotranspiration in the High Andean Grasslands: A Comparison of Measurement and Estimation Methods
Actual evapotranspiration (ETa) explains the exchange of water and energy between soil, land surface, and atmosphere. Despite its importance, it remains difficult to measure directly. Grasslands represent a widespread ecosystem for which further assessment of the measurement and estimation of ETa is needed. Thus, the objective of this study was to compare measurements and estimations of ETa in a mountain grassland ecosystem made using different approaches. The study was conducted in the Zhurucay Ecohydrological Observatory, located in the high Andes of Ecuador between 3,500 and 3,900 m a.s.l. The study area is a representative site of the páramo ecosystem, in which the vegetation mainly consists of tussock grasslands. ETa was measured or estimated using the following methods: eddy-covariance (EC), volumetric lysimeters (Lys), water balance (WB), energy balance (EB), the calibrated Penman-Monteith equation (PMCal), and two hydrological models [the Probability Distribution Model (PDM) and the Hydrologiska Byråns Vattenbalansavdelning model (HBV-light)]. During 1 year, precipitation (P) accumulated to 1,094 mm while ETa (measured with EC) accumulated to 622 mm (with ETa/P = 0.57). On a daily basis, the EC method measured average ETa rates of 1.7 mm/day. The best daily estimates according to percentage bias (pbias), normalized root mean square error (nRMSE), Pearson's correlation coefficient (r) and the volumetric coefficient (ve) came from the HBV-light model, followed by the PMCal and the PDM (pbias: −2 to −20%, nRMSE: 12–15%, r: 0.7–0.9, and ve: 0.7–0.8). On the other hand, the WB, EB, and Lys estimates showed a poor performance (pbias: −10 to −19%, nRMSE: 25–93%, r: −0.4 to 0.5, and ve: −0.5 to 0.7). As the methods used in this study are of different types (hydrological, micrometeorological, and analytical), their suitability and applications are discussed in terms of their costs, temporal resolution, and accuracy. This study identifies low-cost and easy-to-implement alternatives to EC measurements, such as hydrological models and the calibrated Penman-Monteith equation. This study also allows us to provide an increment of progress on the accurate closure of the water balance in grasslands
Integrating geographic data and the SCS-CN method with LSTM networks for enhanced runoff forecasting in a complex mountain basin
IntroductionIn complex mountain basins, hydrological forecasting poses a formidable challenge due to the intricacies of runoff generation processes and the limitations of available data. This study explores the enhancement of short-term runoff forecasting models through the utilization of long short-term memory (LSTM) networks.MethodsTo achieve this, we employed feature engineering (FE) strategies, focusing on geographic data and the Soil Conservation Service Curve Number (SCS-CN) method. Our investigation was conducted in a 3,390 km2 basin, employing the GSMaP-NRT satellite precipitation product (SPP) to develop forecasting models with lead times of 1, 6, and 11 h. These lead times were selected to address the needs of near-real-time forecasting, flash flood prediction, and basin concentration time assessment, respectively.Results and discussionOur findings demonstrate an improvement in the efficiency of LSTM forecasting models across all lead times, as indicated by Nash-Sutcliffe efficiency values of 0.93 (1 h), 0.77 (6 h), and 0.67 (11 h). Notably, these results are on par with studies relying on ground-based precipitation data. This methodology not only showcases the potential for advanced data-driven runoff models but also underscores the importance of incorporating available geographic information into precipitation-ungauged hydrological systems. The insights derived from this study offer valuable tools for hydrologists and researchers seeking to enhance the accuracy of hydrological forecasting in complex mountain basins
Temporal dynamics in dominant runoff sources and flow paths in the Andean Páramo
Funded by Central Research Office of the Universidad de Cuenca (DIUC) Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT 112–2012) . Grant Number: SENESCYT 112-2012 German Research Foundation (DFG) . Grant Number: BR2238/14-1Peer reviewedPublisher PD
- …