100 research outputs found

    Gravitational energy and cosmic acceleration

    Get PDF
    Cosmic acceleration is explained quantitatively, as an apparent effect due to gravitational energy differences that arise in the decoupling of bound systems from the global expansion of the universe. "Dark energy" is a misidentification of those aspects of gravitational energy which by virtue of the equivalence principle cannot be localised, namely gradients in the energy due to the expansion of space and spatial curvature variations in an inhomogeneous universe. A new scheme for cosmological averaging is proposed which solves the Sandage-de Vaucouleurs paradox. Concordance parameters fit supernovae luminosity distances, the angular scale of the sound horizon in the CMB anisotropies, and the effective comoving baryon acoustic oscillation scale seen in galaxy clustering statistics. Key observational anomalies are potentially resolved, and unique predictions made, including a quantifiable variance in the Hubble flow below the scale of apparent homogeneity.Comment: 9 pages, 2 figures. An essay which received Honorable Mention in the 2007 GRF Essay Competition. To appear in a special issue of Int. J. Mod. Phys.

    Non-Abelian gauge field theory in scale relativity

    Get PDF
    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a non-differentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ``scale-space''. We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description.Comment: 24 pages, LaTe

    APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND

    Get PDF
    A proposal is made to test Newton's inverse-square law using the perihelion shift of test masses (planets) in free fall within a spacecraft located at the Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will operate in a drag-free environment with controlled experimental conditions and minimal interference from terrestrial sources of contamination. We demonstrate that such a space experiment can probe the presence of a "hidden" fifth dimension on the scale of a micron, if the perihelion shift of a "planet" can be measured to sub-arc-second accuracy. Some suggestions for spacecraft design are made.Comment: 17 pages, revtex, references added. To appear in Special issue of IJMP

    Tidal Dynamics in Cosmological Spacetimes

    Get PDF
    We study the relative motion of nearby free test particles in cosmological spacetimes, such as the FLRW and LTB models. In particular, the influence of spatial inhomogeneities on local tidal accelerations is investigated. The implications of our results for the dynamics of the solar system are briefly discussed. That is, on the basis of the models studied in this paper, we estimate the tidal influence of the cosmic gravitational field on the orbit of the Earth around the Sun and show that the corresponding temporal rate of variation of the astronomical unit is negligibly small.Comment: 12 pages, no figures, REVTeX 4.0; appendix added, new references, and minor changes throughout; to appear in Classical and Quantum Gravity; v4: error in (A24) of Appendix A corrected, results and conclusions unchanged. We thank L. Iorio for pointing out the erro

    Quantum-classical transition in Scale Relativity

    Get PDF
    The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows us to recover quantum mechanics as mechanics on a non-differentiable (fractal) spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as geodesic equations in this framework. A development of the intrinsic properties of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads us to a derivation of the Dirac equation within the scale-relativity paradigm. The complex form of the wavefunction in the Schrodinger and Klein-Gordon equations follows from the non-differentiability of the geometry, since it involves a breaking of the invariance under the reflection symmetry on the (proper) time differential element (ds - ds). This mechanism is generalized for obtaining the bi-quaternionic nature of the Dirac spinor by adding a further symmetry breaking due to non-differentiability, namely the differential coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance under parity and time inversion. The Pauli equation is recovered as a non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur

    Effects of structure formation on the expansion rate of the Universe: An estimate from numerical simulations

    Full text link
    General relativistic corrections to the expansion rate of the Universe arise when the Einstein equations are averaged over a spatial volume in a locally inhomogeneous cosmology. It has been suggested that they may contribute to the observed cosmic acceleration. In this paper, we propose a new scheme that utilizes numerical simulations to make a realistic estimate of the magnitude of these corrections for general inhomogeneities in (3+1) spacetime. We then quantitatively calculate the volume averaged expansion rate using N-body large-scale structure simulations and compare it with the expansion rate in a standard FRW cosmology. We find that in the weak gravitational field limit, the converged corrections are slightly larger than the previous claimed 10^{-5} level, but not large enough nor even of the correct sign to drive the current cosmic acceleration. Nevertheless, the question of whether the cumulative effect can significantly change the expansion history of the Universe needs to be further investigated with strong-field relativity.Comment: 13 pages, 6 figures, improved version published in Phys. Rev.

    Phenomenological constraints on Lemaitre-Tolman-Bondi cosmological inhomogeneities from solar system dynamics

    Full text link
    We, first, analytically work out the long-term, i.e. averaged over one orbital revolution, perturbations on the orbit of a test particle moving in a local Fermi frame induced therein by the cosmological tidal effects of the inhomogeneous Lemaitre-Tolman-Bondi (LTB) model. The LTB solution has recently attracted attention, among other things, as a possible explanation of the observed cosmic acceleration without resorting to dark energy. Then, we phenomenologically constrain both the parameters K_1 = -\ddot R/R and K_2 = -\ddot R^'/R^' of the LTB metric in the Fermi frame by using different kinds of solar system data. The corrections Δϖ˙\Delta\dot\varpi to the standard Newtonian/Einsteinian precessions of the perihelia of the inner planets recently estimated with the EPM ephemerides, compared to our predictions for them, yield K_1 = (4+8) 10^-26 s^-2, K_2 = (3+7) 10^-23 s^-2. The residuals of the Cassini-based Earth-Saturn range, compared with the numerically integrated LTB range signature, allow to obtain K_1/2 = 10^-27 s^-2. The LTB-induced distortions of the orbit of a typical object of the Oort cloud with respect to the commonly accepted Newtonian picture, based on the observations of the comet showers from that remote region of the solar system, point towards K_1/2 <= 10^-30-10^-32 s^-2. Such figures have to be compared with those inferred from cosmological data which are of the order of K1 \approx K2 = -4 10^-36 s^-2.Comment: LaTex2e, 18 pages, 3 tables, 3 figures. Minor changes. Reference added. Accepted by Journal of Cosmology and Astroparticle Physics (JCAP

    Black Holes in the Universe: Generalized Lemaitre-Tolman-Bondi Solutions

    Full text link
    We present new exact solutions {which presumably describe} black holes in the background of a spatially flat, pressureless dark matter (DM)-, or dark matter plus dark energy (DM+DE)-, or quintom-dominated universe. These solutions generalize Lemaitre-Tolman-Bondi metrics. For a DM- or (DM+DE)-dominated universe, the area of the black hole apparent horizon (AH) decreases with the expansion of the universe while that of the cosmic AH increases. However, for a quintom-dominated universe, the black hole AH first shrinks and then expands, while the cosmic AH first expands and then shrinks. A (DM+DE)-dominated universe containing a black hole will evolve to the Schwarzschild-de Sitter solution with both AHs approaching constant size. In a quintom-dominated universe, the black hole and cosmic AHs will coincide at a certain time, after which the singularity becomes naked, violating Cosmic Censorship.Comment: 13 pages, 4 figure

    How close can an Inhomogeneous Universe mimic the Concordance Model?

    Full text link
    Recently, spatially inhomogeneous cosmological models have been proposed as an alternative to the LCDM model, with the aim of reproducing the late time dynamics of the Universe without introducing a cosmological constant or dark energy. This paper investigates the possibility of distinguishing such models from the standard LCDM using background or large scale structure data. It also illustrates and emphasizes the necessity of testing the Copernican principle in order to confront the tests of general relativity with the large scale structure.Comment: 15 pages, 7 figure

    Covariant coarse-graining of inhomogeneous dust flow in General Relativity

    Full text link
    A new definition of coarse-grained quantities describing the dust flow in General Relativity is proposed. It assigns the coarse--grained expansion, shear and vorticity to finite-size comoving domains of fluid in a covariant, coordinate-independent manner. The coarse--grained quantities are all quasi-local functionals, depending only on the geometry of the boundary of the considered domain. They can be thought of as relativistic generalizations of simple volume averages of local quantities in a flat space. The procedure is based on the isometric embedding theorem for S^2 surfaces and thus requires the boundary of the domain in question to have spherical topology and positive scalar curvature. We prove that in the limit of infinitesimally small volume the proposed quantities reproduce the local expansion, shear and vorticity. In case of irrotational flow we derive the time evolution for the coarse-grained quantities and show that its structure is very similar to the evolution equation for their local counterparts. Additional terms appearing in it may serve as a measure of the backreacton of small-scale inhomogeneities of the flow on the large-scale motion of the fluid inside the domain and therefore the result may be interesting in the context of the cosmological backreaction problem. We also consider the application of the proposed coarse-graining procedure to a number of known exact solutions of Einstein equations with dust and show that it yields reasonable results.Comment: 17 pages, 5 figures. Version accepted in Classical and Quantum Gravity
    • 

    corecore