44 research outputs found

    Kinetic resolution of racemic {alpha}-olefins with ansa-zirconocene polymerization catalysts: Enantiomorphic site vs. chain end control

    Get PDF
    Copolymerization of racemic {alpha}-olefins with ethylene and propylene was carried out in the presence of enantiopure C1-symmetric ansa metallocene, {1,2-(SiMe2)2({eta}5-C5H-3,5-(CHMe2)2)({eta}5-C5H3)}ZrCl2 to probe the effect of the polymer chain end on enantioselection for the R- or S-{alpha}-olefin during the kinetic resolution by polymerization catalysis. Copolymerizations with ethylene revealed that the polymer chain end is an important factor in the enantioselection of the reaction and that for homopolymerization, chain end control generally works cooperatively with enantiomorphic site control. Results from propylene copolymerizations suggested that chain end control arising from a methyl group at the beta carbon along the main chain can drastically affect selectivity, but its importance as a stereo-directing element depends on the identity of the olefin

    Catalyst Site Epimerization during the Kinetic Resolution of Chiral α-Olefins by Polymerization

    Get PDF
    A new enantiopure C1-symmetric olefin polymerization precatalyst, (1,2-SiMe_2)_2{η^5-C_5H_2-4-((S)-CHEtCMe_3)}{η^5-C_5H-3,5-(CHMe_2)_2}ZrCl_2, (S)-2, was synthesized, and its use for the kinetic resolution of 3-methyl-substituted racemic α-olefins was investigated. Upon activation with methyl aluminoxane (MAO), selectivity factors for most olefins were greater when (S)-2 was used as the catalyst as compared to its previously reported methylneopentyl analogue, (1,2-SiMe_2)_2{η^5-C_5H_2-4-((S)-CHMeCCMe_3)}{η^5-C_5H-3,5-(CHMe_2)_2}ZrCl_2, (S)-1. Pentad analysis of polypropylene produced by the two catalysts at various propylene concentrations indicates that (S)-2 undergoes more efficient site epimerization (polymeryl chain swinging prior to subsequent monomer enchainment) at intermediate propylene concentrations compared to (S)-1. At high and low propylene concentrations, however, the two catalysts behave similarly. On the other hand, polymerization of 3,5,5-trimethyl-1-hexene at different olefin concentrations and temperatures illustrated that selectivity differences between the two catalysts are likely not a consequence of inefficient site epimerization for (S)-1

    The development of endo-selective epoxide-opening cascades in water

    Get PDF
    This tutorial review traces the development of endo-regioselective epoxide-opening reactions in water. Templated, water-promoted epoxide-opening cyclization reactions can offer rapid access to subunits of the ladder polyethers, a fascinating and complex family of natural products. This review may be of interest to those curious about the ladder polyethers and their hypothesized biogenesis, about organic reactions in water, and about the development and application of cascade reactions in organic synthesis

    Hydrologic and isotopic modeling of Alpine Lake Waiau, Mauna Kea, Hawai'i

    Get PDF
    Analysis of hydrologic, meteorologic, and isotopic data collected over 3 yr quantifies and explains the enormous variability and isotopic enrichment (ÎŽ18O = +16.9, ÎŽD = +50.0) of alpine Lake Waiau, a culturally and ecologically significant perched lake near the summit of Mauna Kea, Hawai'i. Further, a simple one-dimensional hydrologic model was developed that couples standard water budget modeling with modeling of ÎŽD and ÎŽ18O isotopic composition to provide daily predictions of lake volume and chemistry. Data analysis and modeling show that winter storms are the primary source of water for the lake, adding a distinctively light isotopic signature appropriate for high-altitude precipitation. Evaporation at the windy, dry summit is the primary loss mechanism for most of the year, greatly enriching the lake in heavy isotopes

    Autocrine Activation of the MET Receptor Tyrosine Kinase in Acute Myeloid Leukemia

    Get PDF
    Although the treatment of acute myeloid leukemia (AML) has improved significantly, more than half of all patients develop disease that is refractory to intensive chemotherapy. Functional genomics approaches offer a means to discover specific molecules mediating aberrant growth and survival of cancer cells. Thus, using a loss-of-function RNA interference genomic screen, we identified aberrant expression of the hepatocyte growth factor (HGF) as a critical factor in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance due to compensatory upregulation of HGF expression, leading to restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1), concomitant inhibition of FGFR1 and MET blocked compensatory HGF upregulation, resulting in sustained logarithmic cell kill both in vitro and in xenograft models in vivo. Our results demonstrate widespread dependence of AML cells on autocrine activation of MET, as well as the importance of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers

    Entropic factors provide unusual reactivity and selectivity in epoxide-opening reactions promoted by water

    No full text
    Despite the myriad of selective enzymatic reactions that occur in water, chemists have rarely capitalized on the unique properties of this medium to govern selectivity in reactions. Here we report detailed mechanistic investigations of a water-promoted reaction that displays high selectivity for what is generally a disfavored product. A combination of structural and kinetic data indicates not only that synergy between substrate and water suppresses undesired pathways but also that water promotes the desired pathway by stabilizing charge in the transition state, facilitating proton transfer, doubly activating the substrate for reaction, and perhaps most remarkably, reorganizing the substrate into a reactive conformation that leads to the observed product. This approach serves as an outline for a general strategy of exploiting solvent-solute interactions to achieve unusual reactivity in chemical reactions. These findings may also have implications in the biosynthesis of the ladder polyether natural products, such as the brevetoxins and ciguatoxins.Petroleum Research Fund (47212-AC1)National Institute of General Medical Sciences (U.S.) (GM72566

    Evidence That Epoxide-Opening Cascades Promoted by Water Are Stepwise and Become Faster and More Selective After the First Cyclization

    No full text
    A detailed kinetic study of the endo-selective epoxide-opening cascade reaction of a diepoxy alcohol in neutral water was undertaken using 1H NMR spectroscopy. The observation of monoepoxide intermediates resulting from initial endo and exo cyclization indicated that the cascade proceeds via a stepwise mechanism rather than through a concerted one. Independent synthesis and cyclization of these monoepoxide intermediates demonstrated that they are chemically and kinetically competent intermediates in the cascade. Analysis of each step of the reaction revealed that both the rate and regioselectivity of cyclization improve as the cascade reaction proceeds. In the second step, cyclization of an epoxy alcohol substrate templated by a fused diad of two tetrahydropyran rings proceeds with exceptionally high regioselectivity (endo:exo = 19:1), the highest we have measured in the opening of a simple trans-disubstituted epoxide. The origins of these observations are discussed.National Institute of General Medical Sciences (U.S.) (GM72566)Petroleum Research Fund (47212-AC1
    corecore