6,583 research outputs found
Pork Production in Nebraska
This circular discusses a variety of recommendations to produce pork profitably during World War I
Analysis of high quality superconducting resonators: consequences for TLS properties in amorphous oxides
noise caused by microscopic Two-Level Systems (TLS) is known to be very
detrimental to the performance of superconducting quantum devices but the
nature of these TLS is still poorly understood. Recent experiments with
superconducting resonators indicates that interaction between TLS in the oxide
at the film-substrate interface is not negligible. Here we present data on the
loss and frequency noise from two different Nb resonators with and
without Pt capping and discuss what conclusions can be drawn regarding the
properties of TLS in amorphous oxides. We also estimate the concentration and
dipole moment of the TLS.Comment: 8 pages, 5 figure
Mass fractionation of the lunar surface by solar wind sputtering
The sputtering of the lunar surface by the solar wind is examined as a possible mechanism of mass fractionation. Simple arguments based on current theories of sputtering and the ballistics of the sputtered atoms suggest that most ejected atoms will have sufficiently high energy to escape lunar gravity. However, the fraction of atoms which falls back to the surface is enriched in the heavier atomic components relative to the lighter ones. This material is incorporated into the heavily radiation-damaged outer surfaces of grains where it is subject to resputtering. Over the course of several hundred years an equilibrium surface layer, enriched in heavier atoms, is found to form. The dependence of the calculated results upon the sputtering rate and on the details of the energy spectrum of sputtered particles is investigated. It is concluded that mass fractionation by solar wind sputtering is likely to be an important phenomenon on the lunar surface
Simplest cosmological model with the scalar field II. Influence of cosmological constant
Continuing the investigation of the simplest cosmological model with the
massive real scalar non-interacting inflaton field minimally coupled to gravity
we study an influence of the cosmological constant on the behaviour of
trajectories in closed minisuperspace Friedmann-Robertson-Walker model. The
transition from chaotic to regular behaviour for large values of cosmological
constant is discussed. Combining numerical calculations with qualitative
analysis both in configuration and phase space we present a convenient
classification of trajectories.Comment: 12 pages with 2 gif figures and 2 eps figures, mprocl.sty, To appear
in International Journal of Modern Physics
Hierarchical Control for Trajectory Generation and Tracking Via Active Front Steering
A new hierarchical model predictive controller for autonomous vehicle steering control is presented. The controller generates a path of shortest distance by determining lateral coordinates on a longitudinal grid, while respecting road bounds. This path is then parameterized by arc length before being optimized to restrict the normal acceleration values along the trajectory's arc length. The optimized tra-jectory is then tracked using a nonlinear model predictive control scheme using a bicycle plant model to calculate an optimal steering angle for the tires. The proposed controller is evaluated in simulation during a double-lane-change maneuver, where it generates and tracks a reference trajectory while observing the road boundaries and acceleration limits. Its performance is compared to a controller without path optimization, along with another that uses a smooth, predetermined, reference path instead of creating its own initial reference. It is shown that the proposed controller improves the tracking compared to a controller without path optimization, with a four-times reduction in average lateral tracking error. The average lateral acceleration is also reduced by 6%. The controller also maintains the tracking performance of a controller that uses a smooth reference path, while showing a much greater flexibility due to its ability to create its own initial reference path rather than having to follow a predetermined trajectory
Just how long can you live in a black hole and what can be done about it?
We study the problem of how long a journey within a black hole can last.
Based on our observations, we make two conjectures. First, for observers that
have entered a black hole from an asymptotic region, we conjecture that the
length of their journey within is bounded by a multiple of the future
asymptotic ``size'' of the black hole, provided the spacetime is globally
hyperbolic and satisfies the dominant-energy and non-negative-pressures
conditions. Second, for spacetimes with Cauchy surfaces (or an
appropriate generalization thereof) and satisfying the dominant energy and
non-negative-pressures conditions, we conjecture that the length of a journey
anywhere within a black hole is again bounded, although here the bound requires
a knowledge of the initial data for the gravitational field on a Cauchy
surface. We prove these conjectures in the spherically symmetric case. We also
prove that there is an upper bound on the lifetimes of observers lying ``deep
within'' a black hole, provided the spacetime satisfies the
timelike-convergence condition and possesses a maximal Cauchy surface. Further,
we investigate whether one can increase the lifetime of an observer that has
entered a black hole, e.g., by throwing additional matter into the hole.
Lastly, in an appendix, we prove that the surface area of the event horizon
of a black hole in a spherically symmetric spacetime with ADM mass
is always bounded by , provided
that future null infinity is complete and the spacetime is globally hyperbolic
and satisfies the dominant-energy condition.Comment: 20 pages, REVTeX 3.0, 6 figures included, self-unpackin
Optical scalars in spherical spacetimes
Consider a spherically symmetric spacelike slice through a spherically
symmetric spacetime. One can derive a universal bound for the optical scalars
on any such slice. The only requirement is that the matter sources satisfy the
dominant energy condition and that the slice be asymptotically flat and regular
at the origin. This bound can be used to derive new conditions for the
formation of apparent horizons. The bounds hold even when the matter has a
distribution on a shell or blows up at the origin so as to give a conical
singularity
The Efroimsky formalism adapted to high-frequency perturbations
The Efroimsky perturbation scheme for consistent treatment of gravitational
waves and their influence on the background is summarized and compared with
classical Isaacson's high-frequency approach. We demonstrate that the Efroimsky
method in its present form is not compatible with the Isaacson limit of
high-frequency gravitational waves, and we propose its natural generalization
to resolve this drawback.Comment: 7 pages, to appear in Class. Quantum Gra
- …