11 research outputs found

    Metzincin's canonical methionine is responsible for the structural integrity of the zinc-binding site

    Get PDF
    The metzincins constitute a subclan of metalloproteases possessing a HEXXHXXGXXH/D zinc-binding consensus sequence where the three histidines are zinc ligands and the glutamic acid is the catalytic base. A completely conserved methionine is located downstream of this motif. Families of the metzincin clan comprise, besides others, astacins, adamalysins proteases, matrix metallo-proteases, and serralysins. The latter are extracellular 50kDa proteases secreted by Gram-negative bacteria via a type I secretion system. While there is a large body of structural and biochemical information available, the function of the conserved methionine has not been convincingly clarified yet. Here, we present the crystal structures of a number of mutants of the serralysin member protease C with the conserved methionine being replaced by Ile, Ala, and His. Together with our former report on the leucine and cysteine mutants, we demonstrate here that replacement of the methionine side chain results in an increasing distortion of the zinc-binding geometry, especially pronounced in the χ2 angles of the first and third histidine of the consensus sequence. This is correlated with an increasing loss of proteolytic activity and a sharp increase of flexibility of large segments of the polypeptide chai

    Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre

    Get PDF
    Bis-(3′,5′) cyclic di-guanylate (c-di-GMP) is a key bacterial second messenger that is implicated in the regulation of many crucial processes that include biofilm formation, motility and virulence. Cellular levels of c-di-GMP are controlled through synthesis by GGDEF domain diguanylate cyclases and degradation by two classes of phosphodiesterase with EAL or HD-GYP domains. Here, we have determined the structure of an enzymatically active HD-GYP domain protein from Persephonella marina (PmGH) alone, in complex with substrate (c-di-GMP) and final reaction product (GMP). The structures reveal a novel trinuclear iron binding site, which is implicated in catalysis and identify residues involved in recognition of c-di-GMP. This structure completes the picture of all domains involved in c-di-GMP metabolism and reveals that the HD-GYP family splits into two distinct subgroups containing bi- and trinuclear metal centres.</p

    The Crystal Structure of the Carboxy-Terminal Domain of Human Translation Initiation Factor eIF5

    No full text
    The carboxy-terminal domain (CTD) of eukaryotic initiation factor 5 (eIF5) plays a central role in the formation of the multifactor complex (MFC), an important intermediate for the 43 S preinitiation complex assembly. The IF5-CTD interacts directly with the translation initiation factors eIF1, eIF2-β, and eIF3c, thus forming together with eIF2 bound Met-tRNAi Met the MFC. In this work we present the high resolution crystal structure of eIF5-CTD. This domain of the protein is exclusively composed out of alpha-helices and is homologous to the carboxy-terminal domain of eIF2B-ε (eIF2Bε-CTD). The most striking difference in the two structures is an additional carboxy-terminal helix in eIF5. The binding sites of eIF2-β, eIF3 and eIF1 were mapped onto the structure. eIF2-β and eIF3 bind to non-overlapping patches of negative and positive electrostatic potential, respectively. © 2006 Elsevier Ltd. All rights reserved.This work has been supported by the Swiss National Science Foundation and the Berner Hochschulstiftung. We gratefully acknowledge the help of Clemens Schulze-Briese at beamline X06SA, SLS, PSI Villigen, Martin Walsh at beamline BM14, ESRF, Grenoble, and Gordon Leonard at ID29, ESRF, GrenoblePeer Reviewe

    Stereoselective synthesis and structure determination of a bicyclo[3.3.2]decapeptide

    Get PDF
    By analogy to the structural diversity of covalent bond networks between atoms within organic molecules, one can design topologically diverse peptides from mathematical graphs by assigning amino acids to graph nodes and peptide bonds to graph edges. The key is to use diamino acids or amino diacids as equivalents of trivalent graph nodes, which enables a variety of graph topologies beyond the standard linear and monocyclic graphs in natural peptides. Here the bicyclic decapeptide A1FGk2VFPE1AG2 (1b) was prepared and crystallized to assign its bridge stereochemistry. The bridge configuration appears as planned by the chirality of the branching amino acids. Bicyclization furthermore depends on the presence of matched chiralities in the branching amino acids. The stereoselective formation of the second bridge opens the way for the synthesis of a large family of bicyclic peptides as promising new scaffolds for drug design

    Allelic Variation of Bile Salt Hydrolase Genes in Lactobacillus salivarius Does Not Determine Bile Resistance Levels▿ †

    Get PDF
    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host

    A Far-Red Fluorescent Probe to Visualize Gram-Positive Bacteria in Patient Samples

    No full text
    Gram-positive bacteria, in particular Staphylococcus aureus (S. aureus), are the leading bacterial cause of death in high-income countries and can cause invasive infections at various body sites. These infections are associated with prolonged hospital stays, a large economic burden, considerable treatment failure, and high mortality rates. So far, there is only limited knowledge about the specific locations where S. aureus resides in the human body during various infections. Hence, the visualization of S. aureus holds significant importance in microbiological research. Herein, we report the development and validation of a far-red fluorescent probe to detect Gram-positive bacteria, with a focus on staphylococci, in human biopsies from deep-seated infections. This probe displays strong fluorescence and low background in human tissues, outperforming current tools for S. aureus detection. Several applications are demonstrated, including fixed- and live-cell imaging, flow cytometry, and super-resolution bacterial imaging

    A Far-Red Fluorescent Probe to Visualize Gram-Positive Bacteria in Patient Samples

    No full text
    Gram-positive bacteria, in particular Staphylococcus aureus (S. aureus), are the leading bacterial cause of death in high-income countries and can cause invasive infections at various body sites. These infections are associated with prolonged hospital stays, a large economic burden, considerable treatment failure, and high mortality rates. So far, there is only limited knowledge about the specific locations where S. aureus resides in the human body during various infections. Hence, the visualization of S. aureus holds significant importance in microbiological research. Herein, we report the development and validation of a far-red fluorescent probe to detect Gram-positive bacteria, with a focus on staphylococci, in human biopsies from deep-seated infections. This probe displays strong fluorescence and low background in human tissues, outperforming current tools for S. aureus detection. Several applications are demonstrated, including fixed- and live-cell imaging, flow cytometry, and super-resolution bacterial imaging

    A Far-Red Fluorescent Probe to Visualize Gram-Positive Bacteria in Patient Samples

    No full text
    Gram-positive bacteria, in particular Staphylococcus aureus (S. aureus), are the leading bacterial cause of death in high-income countries and can cause invasive infections at various body sites. These infections are associated with prolonged hospital stays, a large economic burden, considerable treatment failure, and high mortality rates. So far, there is only limited knowledge about the specific locations where S. aureus resides in the human body during various infections. Hence, the visualization of S. aureus holds significant importance in microbiological research. Herein, we report the development and validation of a far-red fluorescent probe to detect Gram-positive bacteria, with a focus on staphylococci, in human biopsies from deep-seated infections. This probe displays strong fluorescence and low background in human tissues, outperforming current tools for S. aureus detection. Several applications are demonstrated, including fixed- and live-cell imaging, flow cytometry, and super-resolution bacterial imaging
    corecore