8 research outputs found

    Relationships Between D-Dimer Levels and Stroke Risk as Well as Adverse Clinical Outcomes After Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and Meta-Analysis

    Get PDF
    Objective: Abnormal elevation of D-dimer levels is an important indicator of disseminated intravascular clotting. Therefore, we hypothesized that high D-dimer levels were associated with the risk of stroke and adverse clinical outcomes of patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). Methods: The present meta-analysis aimed to systematically analyze the associations between D-dimer and the risk of stroke as well as the clinical outcomes of patients with post-stroke or TIA. Meanwhile, dose–response analyses were conducted when there were sufficient data available. Three electronic databases including Pubmed, the Embase database, and the Cochrane Library were searched by two investigators independently. All the pooled results were expressed as risk ratios (RRs). Results: Finally, 22 prospective cohort studies were included into this meta-analysis. The results suggested that high D-dimer levels were associated with increased risks of total stroke (RR 1.4, 95%CI 1.20–1.63), hemorrhagic stroke (RR 1.25, 95%CI 0.69–2.25), and ischemic Stroke (RR 1.55, 95%CI 1.22–1.98), and the dose-dependent relationship was not found upon dose–response analyses. Besides, the high D-dimer levels on admission were correlated with increased risks of all-cause mortality [RR 1.77, 95% confidence interval (CI) 1.26–2.49], 5-day recurrence (RR 2.28, 95%CI 1.32–3.95), and poor functional outcomes (RR 2.01, 95%CI 1.71–2.36) in patients with AIS or TIA. Conclusions: On the whole, high D-dimer levels may be associated with the risks of total stroke and ischemic stroke, but not with hemorrhagic stroke. However, dose–response analyses do not reveal distinct evidence for a dose-dependent association of D-dimer levels with the risk of stroke. Besides, high D-dimer levels on admission may predict adverse clinical outcomes, including all-cause mortality, 5-day recurrence, and 90-day poor functional outcomes, of patients with AIS or TIA. More studies are warranted to quantify the effect of D-dimer levels on the risk of stroke or TIA, so as to verify and substantiate this conclusion in the future

    Assessment of new-onset heart failure prediction in a diabetic population using left ventricular global strain: a prospective cohort study based on UK Biobank

    Get PDF
    BackgroundImpaired glucose utilization influences myocardial contractile function. However, the prognostic importance of left ventricular global radial strain (LV-GRS), left ventricular global circumferential strain (LV-GCS), and left ventricular global longitudinal strain (LV-GLS) in predicting new-onset heart failure (HF) in a population with diabetes is unclear.MethodsThe study design is prospective cohort from the UK Biobank. Totally 37,899 participants had a complete data of cardiac magnetic resonance (CMR), of which 940 patients with diabetes were included, and all the participants completed follow-up. LV-GRS, LV-GCS, and LV-GLS were measured by completely automated CMR with tissue tagging. Cox proportional hazards regression analysis and C-index was performed to evaluate the association between the strain parameters and the new-onset HF in patients suffering from diabetes.ResultsThe average age of the 940 participants was 57.67 ± 6.97 years, with males comprising 66.4% of the overall population. With an average follow-up period of 166.82 ± 15.26 months, 35 (3.72%) patients reached the endpoint (emergence of new-onset HF). Significant associations were found for the three strain parameters and the new-onset HF (LV-GRS—hazard ratio [HR]: 0.946, 95% CI: 0.916-0.976; LV-GCS—HR: 1.162, 95% CI: 1.086-1.244; LV-GCS—HR: 1.181, 95% CI: 1.082-1.289). LV-GRS, LV-GCS, and LV-GLS were closely related to the related indicators to HF, and showed a high relationship to new-onset HF in individuals with diabetes at 5 and 10 years: LV-GRS: 0.75 (95% CI, 0.41-0.94) and 0.76 (95% CI, 0.44-0.98), respectively; LV-GCS: 0.80 (95% CI, 0.50-0.96) and 0.75 (95% CI, 0.41-0.98), respectively; LV-GLS: 0.72 (95% CI, 0.40-0.93) and 0.76 (95% CI, 0.48-0.97), respectively. In addition, age, sex, body mass index (BMI), and presence of hypertension or coronary artery disease (CAD) made no impacts on the association between the global strain parameters and the incidence of HF.ConclusionLV-GRS, LV-GCS, and LV-GLS is significantly related to new-onset HF in patients with diabetes at 5 and 10 years

    Higher systemic immune-inflammation index and systemic inflammation response index levels are associated with stroke prevalence in the asthmatic population: a cross-sectional analysis of the NHANES 1999-2018

    Get PDF
    BackgroundSignificant evidence suggests that asthma might originate from low-grade systemic inflammation. Previous studies have established a positive association between the systemic immune-inflammation index (SII) and the systemic inflammation response index (SIRI) levels and the risk of stroke. However, it remains unclear whether SII, SIRI and the prevalence of stroke are related in individuals with asthma.MethodsThe present cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2018. SII was calculated using the following formula: (platelet count × neutrophil count)/lymphocyte count. SIRI was calculated using the following formula: (neutrophil count × monocyte count)/lymphocyte count. The Spearman rank correlation coefficient was used to determine any correlation between SII, SIRI, and the baseline characteristics. Survey-weighted logistic regression was employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to determine the association between SII, SIRI, and stroke prevalence. The predictive value of SII and SIRI for stroke prevalence was assessed through receiver operating characteristic (ROC) curve analysis, with the area under the ROC curve (AUC) being indicative of its predictive value. Additionally, clinical models including SIRI, coronary heart disease, hypertension, age, and poverty income ratio were constructed to evaluate their clinical applicability.ResultsBetween 1999 and 2018, 5,907 NHANES participants with asthma were identified, of which 199 participants experienced a stroke, while the remaining 5,708 participants had not. Spearman rank correlation analysis indicated that neither SII nor SIRI levels exhibited any significant correlation with the baseline characteristics of the participants (r<0.1). ROC curves were used to determine the optimal cut-off values for SII and SIRI levels to classify participants into low- and high-level groups. Higher SII and SIRI levels were associated with a higher prevalence of stroke, with ORs of 1.80 (95% CI, 1.18-2.76) and 2.23 (95% CI, 1.39-3.57), respectively. The predictive value of SIRI (AUC=0.618) for stroke prevalence was superior to that of SII (AUC=0.552). Furthermore, the clinical model demonstrated good predictive value (AUC=0.825), with a sensitivity of 67.1% and specificity of 87.7%.ConclusionIn asthmatics, higher levels of SII and SIRI significantly increased the prevalence of stroke, with its association being more pronounced in individuals with coexisting obesity and hyperlipidaemia. SII and SIRI are relatively stable novel inflammatory markers in the asthmatic population, with SIRI having a better predictive value for stroke prevalence than SII

    Estimated pulse wave velocity is associated with all-cause and cardio-cerebrovascular disease mortality in stroke population: Results from NHANES (2003–2014)

    Get PDF
    BackgroundArterial stiffness is a significant determinant and evaluation of cardio-cerebrovascular disease and all-cause mortality risk in the stroke population. Estimated pulse wave velocity (ePWV) is a well-established indirect measure of arterial stiffness. We examined the association of ePWV with all-cause and cardio-cerebrovascular disease (CCD) mortality in the stroke population in a large sample of US adults.MethodsThe study design was a prospective cohort study with data from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2014, between the ages of 18–85 years, with follow-up through December 31, 2019. 1,316 individuals with stroke among 58,759 participants were identified and ultimately, 879 stroke patients were included in the analysis. ePWV was calculated from a regression equation using age and mean blood pressure according to the following formula: ePWV = 9.587 − (0.402 × age) + [4.560 × 0.001 × (age2)] − [2.621 × 0.00001 × (age2) × MBP] + (3.176 × 0.001 × age × MBP) − (1.832 × 0.01 × MBP). Survey-weighted Cox regression models were used to assess the association between ePWV and all-cause and CCD mortality risk.ResultsThe high ePWV level group had a higher increased risk of all-cause mortality and CCD mortality compared to the low ePWV level group after fully adjusting for covariates. With an increase in ePWV of 1 m/s, the risk of all-cause and CCD mortality increased by 44%–57% and 47%–72% respectively. ePWV levels were linearly correlated with the risk of all-cause mortality (P for nonlinear = 0.187). With each 1 m/s increase in ePWV, the risk of all-cause mortality increased by 44% (HR 1.44, 95% CI: 1.22–1.69; P < 0.001). When ePWV was <12.1 m/s, an increase in ePWV per 1 m/s was associated with a 119% (HR 2.19, 95% CI: 1.43–3.36; P < 0.001) increase in CCD mortality risk; when ePWV was ≥12.1 m/s, an increase in ePWV per 1 m/s was not associated with in CCD mortality risk.ConclusionePWV is an independent risk factor for all-cause and CCD mortality in stroke patients. Higher levels of ePWV are associated with higher all-cause mortality and CCD mortality in stroke patients

    Relationships Between D-Dimer Levels and Stroke Risk as Well as Adverse Clinical Outcomes After Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and Meta-Analysis

    No full text
    Objective: Abnormal elevation of D-dimer levels is an important indicator of disseminated intravascular clotting. Therefore, we hypothesized that high D-dimer levels were associated with the risk of stroke and adverse clinical outcomes of patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). Methods: The present meta-analysis aimed to systematically analyze the associations between D-dimer and the risk of stroke as well as the clinical outcomes of patients with post-stroke or TIA. Meanwhile, dose–response analyses were conducted when there were sufficient data available. Three electronic databases including Pubmed, the Embase database, and the Cochrane Library were searched by two investigators independently. All the pooled results were expressed as risk ratios (RRs). Results: Finally, 22 prospective cohort studies were included into this meta-analysis. The results suggested that high D-dimer levels were associated with increased risks of total stroke (RR 1.4, 95%CI 1.20–1.63), hemorrhagic stroke (RR 1.25, 95%CI 0.69–2.25), and ischemic Stroke (RR 1.55, 95%CI 1.22–1.98), and the dose-dependent relationship was not found upon dose–response analyses. Besides, the high D-dimer levels on admission were correlated with increased risks of all-cause mortality [RR 1.77, 95% confidence interval (CI) 1.26–2.49], 5-day recurrence (RR 2.28, 95%CI 1.32–3.95), and poor functional outcomes (RR 2.01, 95%CI 1.71–2.36) in patients with AIS or TIA. Conclusions: On the whole, high D-dimer levels may be associated with the risks of total stroke and ischemic stroke, but not with hemorrhagic stroke. However, dose–response analyses do not reveal distinct evidence for a dose-dependent association of D-dimer levels with the risk of stroke. Besides, high D-dimer levels on admission may predict adverse clinical outcomes, including all-cause mortality, 5-day recurrence, and 90-day poor functional outcomes, of patients with AIS or TIA. More studies are warranted to quantify the effect of D-dimer levels on the risk of stroke or TIA, so as to verify and substantiate this conclusion in the future

    Relationships Between D-Dimer Levels and Stroke Risk as Well as Adverse Clinical Outcomes After Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and Meta-Analysis

    No full text
    Objective: Abnormal elevation of D-dimer levels is an important indicator of disseminated intravascular clotting. Therefore, we hypothesized that high D-dimer levels were associated with the risk of stroke and adverse clinical outcomes of patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). Methods: The present meta-analysis aimed to systematically analyze the associations between D-dimer and the risk of stroke as well as the clinical outcomes of patients with post-stroke or TIA. Meanwhile, dose–response analyses were conducted when there were sufficient data available. Three electronic databases including Pubmed, the Embase database, and the Cochrane Library were searched by two investigators independently. All the pooled results were expressed as risk ratios (RRs). Results: Finally, 22 prospective cohort studies were included into this meta-analysis. The results suggested that high D-dimer levels were associated with increased risks of total stroke (RR 1.4, 95%CI 1.20–1.63), hemorrhagic stroke (RR 1.25, 95%CI 0.69–2.25), and ischemic Stroke (RR 1.55, 95%CI 1.22–1.98), and the dose-dependent relationship was not found upon dose–response analyses. Besides, the high D-dimer levels on admission were correlated with increased risks of all-cause mortality [RR 1.77, 95% confidence interval (CI) 1.26–2.49], 5-day recurrence (RR 2.28, 95%CI 1.32–3.95), and poor functional outcomes (RR 2.01, 95%CI 1.71–2.36) in patients with AIS or TIA. Conclusions: On the whole, high D-dimer levels may be associated with the risks of total stroke and ischemic stroke, but not with hemorrhagic stroke. However, dose–response analyses do not reveal distinct evidence for a dose-dependent association of D-dimer levels with the risk of stroke. Besides, high D-dimer levels on admission may predict adverse clinical outcomes, including all-cause mortality, 5-day recurrence, and 90-day poor functional outcomes, of patients with AIS or TIA. More studies are warranted to quantify the effect of D-dimer levels on the risk of stroke or TIA, so as to verify and substantiate this conclusion in the future

    DataSheet_1_Assessment of new-onset heart failure prediction in a diabetic population using left ventricular global strain: a prospective cohort study based on UK Biobank.csv

    No full text
    BackgroundImpaired glucose utilization influences myocardial contractile function. However, the prognostic importance of left ventricular global radial strain (LV-GRS), left ventricular global circumferential strain (LV-GCS), and left ventricular global longitudinal strain (LV-GLS) in predicting new-onset heart failure (HF) in a population with diabetes is unclear.MethodsThe study design is prospective cohort from the UK Biobank. Totally 37,899 participants had a complete data of cardiac magnetic resonance (CMR), of which 940 patients with diabetes were included, and all the participants completed follow-up. LV-GRS, LV-GCS, and LV-GLS were measured by completely automated CMR with tissue tagging. Cox proportional hazards regression analysis and C-index was performed to evaluate the association between the strain parameters and the new-onset HF in patients suffering from diabetes.ResultsThe average age of the 940 participants was 57.67 ± 6.97 years, with males comprising 66.4% of the overall population. With an average follow-up period of 166.82 ± 15.26 months, 35 (3.72%) patients reached the endpoint (emergence of new-onset HF). Significant associations were found for the three strain parameters and the new-onset HF (LV-GRS—hazard ratio [HR]: 0.946, 95% CI: 0.916-0.976; LV-GCS—HR: 1.162, 95% CI: 1.086-1.244; LV-GCS—HR: 1.181, 95% CI: 1.082-1.289). LV-GRS, LV-GCS, and LV-GLS were closely related to the related indicators to HF, and showed a high relationship to new-onset HF in individuals with diabetes at 5 and 10 years: LV-GRS: 0.75 (95% CI, 0.41-0.94) and 0.76 (95% CI, 0.44-0.98), respectively; LV-GCS: 0.80 (95% CI, 0.50-0.96) and 0.75 (95% CI, 0.41-0.98), respectively; LV-GLS: 0.72 (95% CI, 0.40-0.93) and 0.76 (95% CI, 0.48-0.97), respectively. In addition, age, sex, body mass index (BMI), and presence of hypertension or coronary artery disease (CAD) made no impacts on the association between the global strain parameters and the incidence of HF.ConclusionLV-GRS, LV-GCS, and LV-GLS is significantly related to new-onset HF in patients with diabetes at 5 and 10 years.</p

    DataSheet_2_Assessment of new-onset heart failure prediction in a diabetic population using left ventricular global strain: a prospective cohort study based on UK Biobank.pdf

    No full text
    BackgroundImpaired glucose utilization influences myocardial contractile function. However, the prognostic importance of left ventricular global radial strain (LV-GRS), left ventricular global circumferential strain (LV-GCS), and left ventricular global longitudinal strain (LV-GLS) in predicting new-onset heart failure (HF) in a population with diabetes is unclear.MethodsThe study design is prospective cohort from the UK Biobank. Totally 37,899 participants had a complete data of cardiac magnetic resonance (CMR), of which 940 patients with diabetes were included, and all the participants completed follow-up. LV-GRS, LV-GCS, and LV-GLS were measured by completely automated CMR with tissue tagging. Cox proportional hazards regression analysis and C-index was performed to evaluate the association between the strain parameters and the new-onset HF in patients suffering from diabetes.ResultsThe average age of the 940 participants was 57.67 ± 6.97 years, with males comprising 66.4% of the overall population. With an average follow-up period of 166.82 ± 15.26 months, 35 (3.72%) patients reached the endpoint (emergence of new-onset HF). Significant associations were found for the three strain parameters and the new-onset HF (LV-GRS—hazard ratio [HR]: 0.946, 95% CI: 0.916-0.976; LV-GCS—HR: 1.162, 95% CI: 1.086-1.244; LV-GCS—HR: 1.181, 95% CI: 1.082-1.289). LV-GRS, LV-GCS, and LV-GLS were closely related to the related indicators to HF, and showed a high relationship to new-onset HF in individuals with diabetes at 5 and 10 years: LV-GRS: 0.75 (95% CI, 0.41-0.94) and 0.76 (95% CI, 0.44-0.98), respectively; LV-GCS: 0.80 (95% CI, 0.50-0.96) and 0.75 (95% CI, 0.41-0.98), respectively; LV-GLS: 0.72 (95% CI, 0.40-0.93) and 0.76 (95% CI, 0.48-0.97), respectively. In addition, age, sex, body mass index (BMI), and presence of hypertension or coronary artery disease (CAD) made no impacts on the association between the global strain parameters and the incidence of HF.ConclusionLV-GRS, LV-GCS, and LV-GLS is significantly related to new-onset HF in patients with diabetes at 5 and 10 years.</p
    corecore