351 research outputs found
Amplitude Zeroes in Collinear Processes or What Is Left from a Factorizable 2d Model in Higher Dimensions
We show that for collinear processes, i.e. processes where the incoming and
outgoing momenta are aligned along the same line, the S-matrix of the tree
level 2+1 dimensional Thirring model factorizes: any S - matrix element is a
product of elements. In particular this means nullification of
all collinear amplitudes for .Comment: latex , 8 pp., 2 fig. not include
Further constraints on electron acceleration in solar noise storms
We reexamine the energetics of nonthermal electron acceleration in solar
noise storms. A new result is obtained for the minimum nonthermal electron
number density required to produce a Langmuir wave population of sufficient
intensity to power the noise storm emission. We combine this constraint with
the stochastic electron acceleration formalism developed by Subramanian &
Becker (2005) to derive a rigorous estimate for the efficiency of the overall
noise storm emission process, beginning with nonthermal electron acceleration
and culminating in the observed radiation. We also calculate separate
efficiencies for the electron acceleration -- Langmuir wave generation stage
and the Langmuir wave -- noise storm production stage. In addition, we obtain a
new theoretical estimate for the energy density of the Langmuir waves in noise
storm continuum sources.Comment: Accepted for publication in Solar Physic
The effect of wave-particle interactions on low energy cutoffs in solar flare electron spectra
Solar flare hard X-ray spectra from RHESSI are normally interpreted in terms
of purely collisional electron beam propagation, ignoring spatial evolution and
collective effects. In this paper we present self-consistent numerical
simulations of the spatial and temporal evolution of an electron beam subject
to collisional transport and beam-driven Langmuir wave turbulence. These
wave-particle interactions represent the background plasma's response to the
electron beam propagating from the corona to chromosphere and occur on a far
faster timescale than coulomb collisions. From these simulations we derive the
mean electron flux spectrum, comparable to such spectra recovered from high
resolution hard X-rays observations of solar flares with RHESSI. We find that a
negative spectral index (i.e. a spectrum that increases with energy), or local
minima when including the expected thermal spectral component at low energies,
occurs in the standard thick-target model, when coulomb collisions are only
considered. The inclusion of wave-particle interactions does not produce a
local minimum, maintaining a positive spectral index. These simulations are a
step towards a more complete treatment of electron transport in solar flares
and suggest that a flat spectrum (spectral index of 0 to 1) down to thermal
energies maybe a better approximation instead of a sharp cut-off in the
injected electron spectrum.Comment: 6 pages, 5 figures, accepted by ApJ
The large limit of four-point functions in N=4 super-Yang-Mills theory from anti-de Sitter Supergravity
We compute the imaginary part of scalar four-point functions in the AdS/CFT
correspondence relevant to N=4 super Yang-Mills theory. Unitarity of the AdS
supergravity demands that the imaginary parts of the correlation functions
factorize into products of lower-point functions. We include the exchange
diagrams for scalars as well as gravitons and find explicit expressions for the
imaginary parts of these correlators. In momentum space these expressions
contain only rational functions and logarithms of the kinematic invariants, in
such a manner that the correlator is not a free-field result. The simplicity of
these results, however, indicate the possibility of additional symmetry
structures in N=4 super Yang-Mills theory in the large limit at strong
effective coupling. The complete expressions may be computed from the integral
results derived here.Comment: 23 pages, latex, additional references and comment
Chromospheric magnetic field and density structure measurements using hard X-rays in a flaring coronal loop
<p><b>Aims:</b> A novel method of using hard X-rays as a diagnostic for chromospheric density and magnetic structures is developed to infer sub-arcsecond vertical variation of magnetic flux tube size and neutral gas density.</p>
<p><b>Methods:</b> Using Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data and the newly developed X-ray visibilities forward fitting technique we find the FWHM and centroid positions of hard X-ray sources with sub-arcsecond resolution (~0.2'') for a solar limb flare. We show that the height variations of the chromospheric density and the magnetic flux densities can be found with an unprecedented vertical resolution of ~150 km by mapping 18-250 keV X-ray emission of energetic electrons propagating in the loop at chromospheric heights of 400-1500 km.</p>
<p><b>Results:</b> Our observations suggest that the density of the neutral gas is in good agreement with hydrostatic models with a scale height of around 140 30 km. FWHM sizes of the X-ray sources decrease with energy suggesting the expansion (fanning out) of magnetic flux tubes in the chromosphere with height. The magnetic scale height B(z)(dB/dz)-1 is found to be of the order of 300 km and a strong horizontal magnetic field is associated with noticeable flux tube expansion at a height of ~900 km.</p>
Solar wind density turbulence and solar flare electron transport from the Sun to the Earth
Solar flare accelerated electron beams propagating away from the Sun can
interact with the turbulent interplanetary media, producing plasma waves and
type III radio emission. These electron beams are detected near the Earth with
a double power-law energy spectrum. We simulate electron beam propagation from
the Sun to the Earth in the weak turbulent regime taking into account the
self-consistent generation of plasma waves and subsequent wave interaction with
density fluctuations from low frequency MHD turbulence. The rate at which
plasma waves are induced by an unstable electron beam is reduced by background
density fluctuations, most acutely when fluctuations have large amplitudes or
small wavelengths. This suppression of plasma waves alters the wave
distribution which changes the electron beam transport. Assuming a 5/3
Kolmogorov-type power density spectrum of fluctuations often observed near the
Earth, we investigate the corresponding energy spectrum of the electron beam
after it has propagated 1 AU. We find a direct correlation between the spectrum
of the double power-law below the break energy and the turbulent intensity of
the background plasma. For an initial spectral index of 3.5, we find a range of
spectra below the break energy between 1.6-2.1, with higher levels of
turbulence corresponding to higher spectral indices.Comment: 9 pages, 9 figures, to be published in Ap
- …