9 research outputs found

    A new encoding of coalescent processes. Applications to the additive and multiplicative cases

    No full text
    International audienceWe revisit the discrete additive and multiplicative coalescents, starting with n particles with unit mass. These cases are known to be related to some "combinatorial coalescent processes": a time reversal of a fragmentation of Cayley trees or a parking scheme in the additive case, and the random graph process (G(n,p))p(G(n,p))_p in the multiplicative case. Time being fixed, encoding these combinatorial objects in real-valued processes indexed by the line is the key to describing the asymptotic behaviour of the masses as nn\to\infty. We propose to use the Prim order on the vertices instead of the classical breadth-first (or depth-first) traversal to encode the combinatorial coalescent processes. In the additive case, this yields interesting connections between the different representations of the process. In the multiplicative case, it allows one to answer to a stronger version of an open question of Aldous [Ann. Probab., vol. 25, pp. 812--854, 1997]: we prove that not only the sequence of (rescaled) masses, seen as a process indexed by the time λ\lambda, converges in distribution to the reordered sequence of lengths of the excursions above the current minimum of a Brownian motion with parabolic drift Bt+λtt2/2,t0)B_t+\lambda t−t^2/2,t≥0), but we also construct a version of the standard augmented multiplicative coalescent of Bhamidi, Budhiraja and Wang [Probab. Theory Rel., to appear] using an additional Poisson point process

    Simulation of Co-60 uptake on stainless steel and alloy 690 using the OSCAR V1.4 code integrating an advanced dissolution-precipitation model

    No full text
    International audienceThe contamination of a nuclear cooling system by activated corrosion products (ACPs) is a process that involves many different mechanisms all interacting with each other. One of the most important mechanisms is dissolution-precipitation. This governs the transfer of soluble corrosion products between the circulating water and the immobile oxidized surfaces, and is strongly dependent on the water chemistry. The dissolution-precipitation model was improved in version 1.4 of the OSCAR computer code, which simulates the ACPs transfer in nuclear reactor systems. The OSCAR v1.4 code is now able to better calculate the incorporation of minor species (e.g., a cobalt isotope) into oxides using the chemistry module, PHREEQCEA, which determines the composition of an ideal solid solution and the equilibrium concentrations of elements in the aqueous solution. This model was challenged by comparing the results obtained using OSCAR v1.4 with the experimental results of a test performed in a dedicated loop by Studsvik Nuclear AB. Finally, with this model, the OSCAR v1.4 code accurately reproduces soluble 60^{60}Co uptake on stainless steel and alloy 690 under various experimental conditions (pH, Zn injection and flow rate)

    Preparing the ground for the implementation of a large-scale CCS demonstration in China based on an IGCC-CCS thermal power plant: The China-EU COACH Project

    Get PDF
    AbstractThe COACH project (Cooperation Action Within CCS China-EU11EC/FP6 Contract #038966, co-ordinated by F. Kalaydjian, IFP Energies nouvelles, France.) was launched on November 1st 2006 for a period of 3 years, as part of the 6th framework programme of the European Commission22The French Agency for Development (AFD) is gratefully acknowledged for its financial support to the dissemination, knowledge sharing and capacity building activities developed in COACH.. Gathering 20 partners comprising 8 Chinese partners and 12 European partners, the COACH project was conceived as contributing to the first phase of the Near Zero Emission Coal fired power plants (NZEC) programme, a 3-phase programme developed between the European Union and China, aiming at combating climate change by enabling the deployment in China of thermal power plants equipped with CO2 capture and storage (CCS) facilities.The objective of the COACH project was to establish the basis for the large-scale use of coal for polygeneration in China with pre-combustion capture, transport and geological storage of CO2. Main efforts were place on a future CCS demonstration operated on an Integrated Gasification Combined Cycle (IGCC) thermal power plant fully equipped for converting and splitting the produced syngas into a hydrogen-rich fuel gas and CO2, and with a subsequent storage of CO2 in either mature hydrocarbon reservoirs (Dagang or Shengli oil provinces), deep saline formations or unmineable coal seams. Focus was made on the emission sources and storage sites located in the part of the Bohai Basin in the Shandong Province.The paper will present the main outcomes of the project as follows : •Structuring the China-EU COACH venture: In order to enabling the sharing of knowledge between European and Chinese COACH partners and building capacity a survey of CCS activities was performed, workshops were organised in EU and China, a cooperative website was created and two one-week long CCS schools were organised in China gathering more than 100 students 2/3 thereof coming from China and the remaining from Europe;•Technical actions and challenges relating to CCS, gasification and polygeneration: A generic IGCC concept implemented with CO2 capture was defined and compared against a plain IGCC based on the GreenGen Phase I system without CO2 capture. A detailed analysis of technologies needed for implementing an option for CO2 capture in an IGCC process with provision for production of electricity and methanol was carried out as well as a cost analysis of both CO2 capture and transport;•Geological assessment and storage sites mapping: A quantitative assessment of the potential storage sites (the Dagang and Shengli oil provinces, the deep saline aquifers nearby and the Kailuan coal mining area) was performed along with a mapping of the possible transport infrastructure (by pipelines or ships) that could be developed to connect CO2 sources to CO2 sites; with regards to storage capacity, the main capacity was found to reside in the deep saline aquifers (several giga tonnes) but would require further geological investigation for delivering definite values. The storage potential in oil fields was found to be much smaller (less than one giga tonne) but could provide opportunities for enhanced oil recovery. Finally, the coals of Kailuan mining area exhibit a high ability to adsorb CO2 and provide enhanced coalbed methane recovery, but their injectivity remains to be verified.•Case studies and recommendations for CCS demonstration in China: By integrating results obtained in the previous tasks dealing with CO2 capture and CO2 storage, two scenarios (one small scale–from 0.1 to 1 million tonnes of CO2 per year, one large scale–2 to 3 million tonnes of CO2 per year) were designed to screen options for a possible CCS demonstration project. These alternative CO2 streams are both considered captured from the GreenGen IGCC power plant in Tianjin and transported to one or more geological formations in the Bohai Bay geological basin for permanent disposal. Storage for the smaller scale scenario could be accommodated in the Dagang or Shengli oilfields. Storage for the larger scale scenario (2–3 million tonnes a year) could be accommodated in the Shengli oilfield province (in a number of fields) or potentially in the saline formations that can be found in the Huimin sub-basin area. For each of these options, a preliminary risk assessment was performed. A thorough cost analysis was performed. Policy and regulation issues pertaining to a shift towards CCS in China. The 3-year targeted cooperative actions under the COACH project have mobilised capacities in China and Europe and paved the ground for subsequent CCS demonstrations in China. The next phase of the China-EU NZEC programme should start in 2010 and deliver FEED studies which should allow starting operating a CCS demonstration in China by 2015

    Simulations of corrosion product transfer with the OSCAR v1.2 code

    No full text
    International audienceActivated Corrosion Products (ACPs) generate a radiation field in PWRs, which is the major contributor to the dose absorbed by nuclear power plant staff working during shutdown operations and maintenance. Therefore, a thorough understanding of the mechanisms that control the corrosion product transfer is of the highest importance. Since the 1970's, the R&D strategy in France has been based on experiments in test loops representative of PWR conditions, on in-situ gamma spectrometry measurements of the PWR primary system contamination and on simulation code development. The simulation of corrosion product transfers in PWR primary circuits is a major challenge since it involves many physical and chemical phenomena including: corrosion, dissolution, precipitation, erosion, deposition, convection, activation… In addition to the intrinsic difficulty of multi-physics modelling, the primary systems present severe operating conditions (300 °C, 150 bar, neutron flux, fluid velocity up to 15 m.s-1 and very low corrosion product concentrations). The purpose of the OSCAR code, developed by the CEA in cooperation with EDF and AREVA NP, is to predict the PWR primary system contamination by corrosion and fission products. The OSCAR code is considered to be not only a tool for numerical simulations and predictions (operational practices improvements and new-built PWRs design) but also one that might combine and organise all new knowledge useful to progress on contamination. The OSCAR code for Products of Corrosion, OSCAR PC, allows researchers to analyse the corrosion product behaviour and to calculate the ACP volume and surface activities of the primary and auxiliary systems. In the new version, OSCAR PC V1.2, the corrosion product transfer in the particulate form is enhanced and a new feature is the possibility to simulate cold shutdowns. In order to validate this version, the contamination transfer has been simulated in 5 French PWRs with different operating and design characteristics. After a description of the models of the main transfer mechanisms, the paper presents the calculated ACP surface and volume activities, the calculated concentrations of metallic elements and their comparisons with on-site measurements for one of the 5 validation cases. The simulations of a steam generator replacement and a cold shutdown are also presented. There is a good agreement between the OSCAR PC V1.2 results and the measured values during power operation and cold shutdown as well. Furthermore, the variations with operating cycle of the surface activities are correctly reproduced. Compared to the previous versions, these improvements are mainly due to the improvement of the thermodynamic database of the OSCAR chemistry module, PHREEQCEA, and to the enhancement of the corrosion product transfer in the particulate form

    Tripartite assembly of RND multidrug efflux pumps

    No full text
    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components

    The OSCAR code: a simulation tool to assess the PWR contamination for decommissioning

    No full text
    International audienceKnowing the contamination state of the end-of-life nuclear reactor systems by Long-Lived RadioNu-clides (LLRNs) is a key stage for the decommissioning process. Indeed, the initial state is necessary to optimize the decommissioning works and to manage the radioactive waste as well. To address this issue, the contamination state is usually characterized using different types of techniques: in-situ gamma spectrometry, gamma camera scanning, dose rate measurements, , , measurements of samples obtained by smears or scrapings and then chemical separation processes, scaling factor approach… To reduce the amount of these measurements and thus the Occupational Radiation Ex-posure (ORE) and the decommissioning costs, a method is to assess the level of contamination by simulation. Furthermore, at the design stage of a new reactor, its decommissioning has to be taken into account and a simulation tool, such as the OSCAR code, can predict the radioactive source term at the end of life of a future reactor.The OSCAR code (Outil de Simulation de la ContAmination en Réacteur - tOol of Simulation of Con-tAmination in Reactor) has been developed by the CEA in collaboration with EDF and Framatome since the 1970s. The OSCAR code simulates the production and transfer of Activated Corrosion Products (ACPs) and Actinides and Fission Products and (AFPs) in the reactor systems and thus calculates the masses and activities of radionuclides deposited inside piping and heat exchangers of different circuits. As the OSCAR code has been originally devoted to mainly an industrial objective, which is the reduction of the Occupational Radiation Exposure (ORE) for operating PWRs, it deals with the main ACPs, 60Co, 58Co, 54Mn…, which are short-lived radionuclides. Nevertheless, it also cal-culates LLRNs of interest for decommissioning, such as 55Fe, 63Ni, 90Sr, 239Pu…, most of which are difficult to measure. The OSCAR code is validated through on-site measurements, including the EMECC campaigns, an operational experience feedback unique in the world, that consist of measur-ing the gamma surface activities mainly of the PWR primary system but also of auxiliary systems.After a presentation of the features and modeling of the OSCAR code, the paper will present some OSCAR simulation results of long-lived ACPs and AFPs deposited inside PWR circuits and their comparison with measurements. Perspectives of the OSCAR code on the decommissioning pro-grams will also be discussed

    The OSCAR code package : A unique tool for simulating PWR contamination

    No full text
    International audienceUnderstanding the PWR primary circuit contamination by corrosion products, fission productsand actinides is a crucial issue for reactor operation and design. The main challenges aredecreasing the impact on personnel exposure to radiation, optimizing the plant operation,limiting the activity of the wastes produced during the reactor lifetime and preparingdecommissioning.In cooperation with EDF and AREVA NP, CEA has developed the OSCAR code package, aunique tool for simulating PWR contamination. The OSCAR package results from the mergingof two codes, which simulate PWR contamination by fission products and actinides (PROFIPcode) and by activated corrosion products (PACTOLE code).These two codes have been validated separately against an extensive set of data obtained over 40years from in-situ gamma spectrometry measurements, sampling and analysing campaigns ofprimary coolant, as well as experiments in test loops or experimental reactors, which arerepresentative of PWR conditions.In this paper, a new step is presented with the OSCAR code package, combining the features ofthe two codes and motivated by the fact that, wherever they originate from, the contaminationproducts are subject to the same severe conditions (300 °C, 150 bar, neutron flux, water velocityup to 15 m.s-1) and follow the same transport mechanisms in the primary circuit. The main processes involved are erosion/deposition, dissolution/precipitation, adsorption/desorption,convection, purification, neutron activation, radioactive decrease.The V1.1 version of the OSCAR package is qualified for fission products (Xe, Kr, I, Sr),actinides (U, Np, Pu, Am, Cm) and corrosion products (Ni, Fe, Co, Cr).This paper presents the different release modes (defective fuel rod release, fissile materialdissemination, material corrosion and release), then the processes which govern contaminationtransfer, and finally, we give examples of the comparison of the OSCAR package results withmeasurements in French PWR primary circuit obtained for representative radioisotopes : 133^{133}Xe,90^{90}Sr, 58^{58}Co, 60^{60}Co. In particular, we focus on the main upgrades in the OSCAR simulations compared to thePROFIP and PACTOLE codes : adaptation of the MARGARET module to assess fission productrelease out of fuel pellets in a defective rod, adsorption/desorption model development forstrontium behaviour, multi-criteria calibration of input data which are not well known forcorrosion product simulation

    Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (s)\sqrt(s) = 0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date
    corecore