Abstract

International audienceUnderstanding the PWR primary circuit contamination by corrosion products, fission productsand actinides is a crucial issue for reactor operation and design. The main challenges aredecreasing the impact on personnel exposure to radiation, optimizing the plant operation,limiting the activity of the wastes produced during the reactor lifetime and preparingdecommissioning.In cooperation with EDF and AREVA NP, CEA has developed the OSCAR code package, aunique tool for simulating PWR contamination. The OSCAR package results from the mergingof two codes, which simulate PWR contamination by fission products and actinides (PROFIPcode) and by activated corrosion products (PACTOLE code).These two codes have been validated separately against an extensive set of data obtained over 40years from in-situ gamma spectrometry measurements, sampling and analysing campaigns ofprimary coolant, as well as experiments in test loops or experimental reactors, which arerepresentative of PWR conditions.In this paper, a new step is presented with the OSCAR code package, combining the features ofthe two codes and motivated by the fact that, wherever they originate from, the contaminationproducts are subject to the same severe conditions (300 °C, 150 bar, neutron flux, water velocityup to 15 m.s-1) and follow the same transport mechanisms in the primary circuit. The main processes involved are erosion/deposition, dissolution/precipitation, adsorption/desorption,convection, purification, neutron activation, radioactive decrease.The V1.1 version of the OSCAR package is qualified for fission products (Xe, Kr, I, Sr),actinides (U, Np, Pu, Am, Cm) and corrosion products (Ni, Fe, Co, Cr).This paper presents the different release modes (defective fuel rod release, fissile materialdissemination, material corrosion and release), then the processes which govern contaminationtransfer, and finally, we give examples of the comparison of the OSCAR package results withmeasurements in French PWR primary circuit obtained for representative radioisotopes : 133^{133}Xe,90^{90}Sr, 58^{58}Co, 60^{60}Co. In particular, we focus on the main upgrades in the OSCAR simulations compared to thePROFIP and PACTOLE codes : adaptation of the MARGARET module to assess fission productrelease out of fuel pellets in a defective rod, adsorption/desorption model development forstrontium behaviour, multi-criteria calibration of input data which are not well known forcorrosion product simulation

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/05/2024