16 research outputs found

    A Real-Time, Event Driven Neuromorphic System for Goal-Directed Attentional Selection

    Get PDF
    Computation with spiking neurons takes advantage of the abstraction of action potentials into streams of stereotypical events, which encode information through their timing. This approach both reduces power consumption and alleviates communication bottlenecks. A number of such spiking custom mixed-signal address event representation (AER) chips have been developed in recent years. In this paper, we present i) a flexible event-driven platform consisting of the integration of a visual AER sensor and the SpiNNaker system, a programmable massively parallel digital architecture oriented to the simulation of spiking neural networks; ii) the implementation of a neural network for feature-based attentional selection on this platfor

    Towards Real-World Neurorobotics: Integrated Neuromorphic Visual Attention

    Get PDF
    Neural Information Processing: 21st International Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014. Proceedings, Part IIINeuromorphic hardware and cognitive robots seem like an obvious fit, yet progress to date has been frustrated by a lack of tangible progress in achieving useful real-world behaviour. System limitations: the simple and usually proprietary nature of neuromorphic and robotic platforms, have often been the fundamental barrier. Here we present an integration of a mature “neuromimetic” chip, SpiNNaker, with the humanoid iCub robot using a direct AER - address-event representation - interface that overcomes the need for complex proprietary protocols by sending information as UDP-encoded spikes over an Ethernet link. Using an existing neural model devised for visual object selection, we enable the robot to perform a real-world task: fixating attention upon a selected stimulus. Results demonstrate the effectiveness of interface and model in being able to control the robot towards stimulus-specific object selection. Using SpiNNaker as an embeddable neuromorphic device illustrates the importance of two design features in a prospective neurorobot: universal configurability that allows the chip to be conformed to the requirements of the robot rather than the other way ’round, and stan- dard interfaces that eliminate difficult low-level issues of connectors, cabling, signal voltages, and protocols. While this study is only a building block towards that goal, the iCub-SpiNNaker system demonstrates a path towards meaningful behaviour in robots controlled by neural network chips

    Tree-Ring-Reconstructed Summer Temperatures from Northwestern North America during the Last Nine Centuries*

    Get PDF
    Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    A real-time event-driven nerumorphic system for goal-directed attentional selection

    No full text
    Computation with spiking neurons takes advantage of the abstraction of action potentials into streams of stereotypical events, which encode information through their timing. This approach both reduces power consumption and alleviates communication bottlenecks. A number of such spiking custom mixed-signal address event representation (AER) chips have been developed in recent years. In this paper, we present i) a flexible event-driven platform consisting of the integration of a visual AER sensor and the SpiNNaker system, a programmable massively parallel digital architecture oriented to the simulation of spiking neural networks; ii) the implementation of a neural network for feature-based attentional selection on this platform.Peer Reviewe

    Towards real–world neurorobotics:Integrated neuromorphic visual attention

    Get PDF
    Neural Information Processing: 21st International Conference, ICONIP 2014, Kuching, Malaysia, November 3-6, 2014. Proceedings, Part IIINeuromorphic hardware and cognitive robots seem like an obvious fit, yet progress to date has been frustrated by a lack of tangible progress in achieving useful real-world behaviour. System limitations: the simple and usually proprietary nature of neuromorphic and robotic platforms, have often been the fundamental barrier. Here we present an integration of a mature “neuromimetic” chip, SpiNNaker, with the humanoid iCub robot using a direct AER - address-event representation - interface that overcomes the need for complex proprietary protocols by sending information as UDP-encoded spikes over an Ethernet link. Using an existing neural model devised for visual object selection, we enable the robot to perform a real-world task: fixating attention upon a selected stimulus. Results demonstrate the effectiveness of interface and model in being able to control the robot towards stimulus-specific object selection. Using SpiNNaker as an embeddable neuromorphic device illustrates the importance of two design features in a prospective neurorobot: universal configurability that allows the chip to be conformed to the requirements of the robot rather than the other way ’round, and stan- dard interfaces that eliminate difficult low-level issues of connectors, cabling, signal voltages, and protocols. While this study is only a building block towards that goal, the iCub-SpiNNaker system demonstrates a path towards meaningful behaviour in robots controlled by neural network chips
    corecore