109 research outputs found

    Animal Models of Thrombosis From Zebrafish to Nonhuman Primates: Use in the Elucidation of New Pathologic Pathways and the Development of Antithrombotic Drugs

    Get PDF
    Thrombosis is a leading cause of morbidity and mortality worldwide. Animal models are used to understand the pathological pathways involved in thrombosis and to test the efficacy and safety of new antithrombotic drugs. In this review, we will first describe the central role a variety of animal models of thrombosis and hemostasis has played in the development of new antiplatelet and anticoagulant drugs. These include the widely used P2Y12 antagonists and the recently developed orally available anticoagulants that directly target factor Xa or thrombin. Next, we will describe the new players, such as polyphosphate, neutrophil extracellular traps, and microparticles, which have been shown to contribute to thrombosis in mouse models, particularly venous thrombosis models. Other mouse studies have demonstrated roles for the factor XIIa and factor XIa in thrombosis. This has spurred the development of strategies to reduce their levels or activities as a new approach for preventing thrombosis. Finally, we will discuss the emergence of zebrafish as a model to study thrombosis and its potential use in the discovery of novel factors involved in thrombosis and hemostasis. Animal models of thrombosis from zebrafish to nonhuman primates are vital in identifying pathological pathways of thrombosis that can be safely targeted with a minimal effect on hemostasis. Future studies should focus on understanding the different triggers of thrombosis and the best drugs to prevent each type of thrombotic event

    Nebulized Delivery of the MAPKAP Kinase 2 Peptide Inhibitor MMI-0100 Protects Against Ischemia-Induced Systolic Dysfunction

    Get PDF
    Acute myocardial infarction (AMI) results in systolic dysfunction, myocarditis and fibrotic remodeling, which causes irreversible pathological remodeling of the heart. Associated cell death and inflammation cause cytokine release, which activates the p38 MAPK signaling pathway to propagate damaging signals via MAPKAP kinase 2 (MK2). Previously we showed that intraperitoneal injection of a cell permeable peptide inhibitor of MK2, MMI-0100, protects against fibrosis, apoptosis and systolic dysfunction in a mouse model of AMI induced by left-anterior descending coronary artery (LAD) ligation. Here we tested a new route of administration of MMI-0100: inhalation of nebulized peptide. When given within 30 min of AMI and daily for 2 weeks thereafter, both inhaled and injected MMI-0100 improved cardiac function as measured by conscious echocardiography. Limited fibrosis was observed after 2 weeks by Massons trichrome staining, suggesting that MMI-0100 protects the heart prior to the formation of significant fibrosis. These results support a nebulized route of administration of MMI-0100 can protect the myocardium from ischemic damage

    Mice Expressing Low Levels of CalDAG-GEFI Exhibit Markedly Impaired Platelet Activation With Minor Impact on HemostasisHighlights

    Get PDF
    OBJECTIVE: The tight regulation of platelet adhesiveness, mediated by the αIIbβ3 integrin, is critical for hemostasis and prevention of thrombosis. We recently demonstrated that integrin affinity in platelets is controlled by the guanine nucleotide exchange factor, CalDAG-GEFI (CD-GEFI), and its target, RAP1. In this study, we investigated whether low-level expression of CD-GEFI leads to protection from thrombosis without pathological bleeding in mice. APPROACH AND RESULTS: Cdg1(low) mice were generated by knockin of human CD-GEFI cDNA into the mouse Cdg1 locus. CD-GEFI expression in platelets from Cdg1(low) mice was reduced by ≈90% when compared with controls. Activation of RAP1 and αIIbβ3 was abolished at low agonist concentrations and partially inhibited at high agonist concentrations in Cdg1(low) platelets. Consistently, the aggregation response of Cdg1(low) platelets was weaker than that of wild-type platelets, but more efficient than that observed in Cdg1(-/-) platelets. Importantly, Cdg1(low) mice were strongly protected from arterial and immune complex-mediated thrombosis, with only minimal impact on primary hemostasis. CONCLUSIONS: Together, our studies suggest the partial inhibition of CD-GEFI function as a powerful new approach to safely prevent thrombotic complications

    Targeted disruption of cubilin reveals essential developmental roles in the structure and function of endoderm and in somite formation

    Get PDF
    BACKGROUND: Cubilin is a peripheral membrane protein that interacts with the integral membrane proteins megalin and amnionless to mediate ligand endocytosis by absorptive epithelia such as the extraembryonic visceral endoderm (VE). RESULTS: Here we report the effects of the genetic deletion of cubilin on mouse embryonic development. Cubilin gene deletion is homozygous embryonic lethal with death occurring between 7.5–13.5 days post coitum (dpc). Cubilin-deficient embryos display developmental retardation and do not advance morphologically beyond the gross appearance of wild-type 8–8.5 dpc embryos. While mesodermal structures such as the allantois and the heart are formed in cubilin mutants, other mesoderm-derived tissues are anomalous or absent. Yolk sac blood islands are formed in cubilin mutants but are unusually large, and the yolk sac blood vessels fail to undergo remodeling. Furthermore, somite formation does not occur in cubilin mutants. Morphological abnormalities of endoderm occur in cubilin mutants and include a stratified epithelium in place of the normally simple columnar VE epithelium and a stratified cuboidal epithelium in place of the normally simple squamous epithelium of the definitive endoderm. Cubilin-deficient VE is also functionally defective, unable to mediate uptake of maternally derived high-density lipoprotein (HDL). CONCLUSION: In summary, cubilin is required for embryonic development and is essential for the formation of somites, definitive endoderm and VE and for the absorptive function of VE including the process of maternal-embryo transport of HDL

    Platelet CD36 Signaling Through ERK5 Promotes Caspase-Dependent Procoagulant Activity and Fibrin Deposition In Vivo

    Get PDF
    Dyslipidemia is a risk factor for clinically significant thrombotic events. In this condition, scavenger receptor CD36 potentiates platelet reactivity through recognition of circulating oxidized lipids. CD36 promotes thrombosis by activating redox-sensitive signaling molecules, such as the MAPK extracellular signal-regulated kinase 5 (ERK5). However, the events downstream of platelet ERK5 are not clear. In this study, we report that oxidized low-density lipoprotein (oxLDL) promotes exposure of procoagulant phosphatidylserine (PSer) on platelet surfaces. Studies using pharmacologic inhibitors indicate that oxLDL-CD36 interaction–induced PSer exposure requires apoptotic caspases in addition to the downstream CD36-signaling molecules Src kinases, hydrogen peroxide, and ERK5. Caspases promote PSer exposure and, subsequently, recruitment of the prothrombinase complex, resulting in the generation of fibrin from the activation of thrombin. Caspase activity was observed when platelets were stimulated with oxLDL. This was prevented by inhibiting CD36 and ERK5. Furthermore, oxLDL potentiates convulxin/glycoprotein VI–mediated fibrin formation by platelets, which was prevented when CD36, ERK5, and caspases were inhibited. Using 2 in vivo arterial thrombosis models in apoE-null hyperlipidemic mice demonstrated enhanced arterial fibrin accumulation upon vessel injury. Importantly, absence of ERK5 in platelets or mice lacking CD36 displayed decreased fibrin accumulation in high-fat diet–fed conditions comparable to that seen in chow diet–fed animals. These findings suggest that platelet signaling through CD36 and ERK5 induces a procoagulant phenotype in the hyperlipidemic environment by enhancing caspase-mediated PSer exposure

    Platelet PECAM-1 Inhibits Thrombus Formation In Vivo

    Get PDF
    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell surface glycoprotein receptor expressed on a range of blood cells including platelets, and is also on vascular endothelial cells. PECAM-1 possesses adhesive and signalling properties, the latter being mediated by an Immunoreceptor Tyrosine-based Inhibitory Motif present on the cytoplasmic tail of the protein. Recent studies in vitro have demonstrated that PECAM-1 signalling inhibits the aggregation of platelets. In the present study we have utilised PECAM-1 deficient mice and radiation chimeras to investigate the function of this receptor in the regulation of thrombus formation. Using intravital microscopy and laser induced injury to cremaster muscle arterioles, we show that thrombi formed in PECAM-1 deficient mice were larger, formed more rapidly than in control mice and were more stable. Larger thrombi were also formed in control mice transplanted with PECAM-1 deficient bone marrow, in comparison to control-transplanted mice. A ferric chloride model of thrombosis was used to investigate thrombus formation in carotid arteries. In PECAM-1 deficient mice the time to 75% vessel occlusion was significantly shorter than in control mice. These data provide evidence for the involvement of platelet PECAM-1 in the negative regulation of thrombus formation

    Reducing Implicit Racial Preferences: II Intervention Effectiveness Across Time

    Get PDF
    Implicit preferences are malleable, but does that change last? We tested 9 interventions (8 real and 1 sham) to reduce implicit racial preferences over time. In 2 studies with a total of 6,321 participants, all 9 interventions immediately reduced implicit preferences. However, none were effective after a delay of several hours to several days. We also found that these interventions did not change explicit racial preferences and were not reliably moderated by motivations to respond without prejudice. Short-term malleability in implicit preferences does not necessarily lead to long-term change, raising new questions about the flexibility and stability of implicit preferences. (PsycINFO Database Recor
    corecore