3,817 research outputs found

    The Thin Gap Chambers database experience in test beam and preparations for ATLAS

    Full text link
    Thin gap chambers (TGCs) are used for the muon trigger system in the forward region of the LHC experiment ATLAS. The TGCs are expected to provide a trigger signal within 25 ns of the bunch spacing. An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last few years. A relational database was used for storing the conditions of the tests as well as the configuration of the system. This database has provided the detector control system with the information needed for configuration of the front end electronics. The database is used to assist the online operation and maintenance. The same database is used to store the non event condition and configuration parameters needed later for the offline reconstruction software. A larger scale of the database has been produced to support the whole TGC system. It integrates all the production, QA tests and assembly information. A 1/12th model of the whole TGC system is currently in use for testing the performance of this database in configuring and tracking the condition of the system. A prototype of the database was first implemented during the H8 test beams. This paper describes the database structure, its interface to other systems and its operational performance.Comment: Proceedings IEEE, Nuclear Science Symposium 2005, Stockholm, Sweeden, May 200

    Courant-like brackets and loop spaces

    Full text link
    We study the algebra of local functionals equipped with a Poisson bracket. We discuss the underlying algebraic structures related to a version of the Courant-Dorfman algebra. As a main illustration, we consider the functionals over the cotangent bundle of the superloop space over a smooth manifold. We present a number of examples of the Courant-like brackets arising from this analysis.Comment: 20 pages, the version published in JHE

    Leibniz 2-algebras and twisted Courant algebroids

    Full text link
    In this paper, we give the categorification of Leibniz algebras, which is equivalent to 2-term sh Leibniz algebras. They reveal the algebraic structure of omni-Lie 2-algebras introduced in \cite{omniLie2} as well as twisted Courant algebroids by closed 4-forms introduced in \cite{4form}. We also prove that Dirac structures of twisted Courant algebroids give rise to 2-term LL_\infty-algebras and geometric structures behind them are exactly HH-twisted Lie algebroids introduced in \cite{Grutzmann}.Comment: 22 pages, to appear in Comm. Algebr

    A novel camera colour characterisation model for the colour measurement of human skin

    Get PDF
    Accurate facial skin colour representation is highly required for an increasing number of applications, such as the solution of cosmetic products, the diagnosis of cutaneous diseases, and the manufacture of soft tissue prostheses. This study presents a novel camera colour characterisation model with higher predictive accuracy for the image-based colour measurement of human skin. More specifically, a digital imaging system was developed to collect the facial images of sixty human subjects from four ethnic groups. The newly collected human facial skin colour data and a conventional colour chart were selected as the training dataset, respectively, and three general techniques (linear transformation, polynomial regression, and root-polynomial regression) were utilised to derive the characterisation model by mapping camera digital signals to CIE XYZ tristimulus values. The predictive accuracy of each model was then verified using the mean CIELAB colour difference between actual skin colour measurements and the corresponding predictions from colour images. Results showed that the best model performance was achieved when the human skin colours of real subjects were used as the training samples and first order polynomial regression was used as the mapping algorithm

    Development of an image‐based measurement system for human facial skin colour

    Get PDF
    In this study, an image-based measurement system was developed for human facial skin colour, involving the development of a digital imaging system, collection of facial skin colour from 60 human subjects, generation of different colour characterization models, and performance evaluation. The factors that affect facial skin colour characterization, including different training datasets (two colour charts and the collected facial skin colour dataset), mathematical mapping methods (linear transformation, polynomial regression, root-polynomial regression and neural network) and camera image formats (JPG and RAW), were investigated and quantified not only by the conventional method of CIELAB colour difference, but also two newly introduced measures, facial colour contrast and skin colour gamut. The results indicate that the RAW image format for camera digital signals gave a more stable performance than the JPG format images, and the higher order polynomial regression with good predictive accuracy in terms of CIELAB colour difference did not perform well for the whole facial image. It is suggested to evaluate the model performance using the colour of both specific facial positions and the overall facial skin colour. Our comparative analysis in this study provides useful guidance for determining the colour characterization model for facial skin

    Optimizing Parametric Factors in CIELAB and CIEDE2000 Color-Difference Formulas for 3D-Printed Spherical Objects

    Get PDF
    The current color-difference formulas were developed based on 2D samples and there is no standard guidance for the color-difference evaluation of 3D objects. The aim of this study was to test and optimize the CIELAB and CIEDE2000 color-difference formulas by using 42 pairs of 3D-printed spherical samples in Experiment I and 40 sample pairs in Experiment II. Fifteen human observers with normal color vision were invited to attend the visual experiments under simulated D65 illumination and assess the color differences of the 82 pairs of 3D spherical samples using the gray-scale method. The performances of the CIELAB and CIEDE2000 formulas were quantified by the STRESS index and F-test with respect to the collected visual results and three different optimization methods were performed on the original color-difference formulas by using the data from the 42 sample pairs in Experiment I. It was found that the optimum parametric factors for CIELAB were kL = 1.4 and kC = 1.9, whereas for CIEDE2000, kL = 1.5. The visual data of the 40 sample pairs in Experiment II were used to test the performance of the optimized formulas and the STRESS values obtained for CIELAB/CIEDE2000 were 32.8/32.9 for the original formulas and 25.3/25.4 for the optimized formulas. The F-test results indicated that a significant improvement was achieved using the proposed optimization of the parametric factors applied to both color-difference formulas for 3D-printed spherical samples

    Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO

    Get PDF
    Functional brain network studies using the Blood Oxygen-Level Dependent (BOLD) signal from functional Magnetic Resonance Imaging (fMRI) are becoming increasingly prevalent in research on the neural basis of human cognition. An important problem in functional brain network analysis is to understand directed functional interactions between brain regions during cognitive performance. This problem has important implications for understanding top-down influences from frontal and parietal control regions to visual occipital cortex in visuospatial attention, the goal motivating the present study. A common approach to measuring directed functional interactions between two brain regions is to first create nodal signals by averaging the BOLD signals of all the voxels in each region, and to then measure directed functional interactions between the nodal signals. Another approach, that avoids averaging, is to measure directed functional interactions between all pairwise combinations of voxels in the two regions. Here we employ an alternative approach that avoids the drawbacks of both averaging and pairwise voxel measures. In this approach, we first use the Least Absolute Shrinkage Selection Operator (LASSO) to pre-select voxels for analysis, then compute a Multivariate Vector AutoRegressive (MVAR) model from the time series of the selected voxels, and finally compute summary Granger Causality (GC) statistics from the model to represent directed interregional interactions. We demonstrate the effectiveness of this approach on both simulated and empirical fMRI data. We also show that averaging regional BOLD activity to create a nodal signal may lead to biased GC estimation of directed interregional interactions. The approach presented here makes it feasible to compute GC between brain regions without the need for averaging. Our results suggest that in the analysis of functional brain networks, careful consideration must be given to the way that network nodes and edges are defined because those definitions may have important implications for the validity of the analysis

    From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex

    Get PDF
    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.Comment: 24 pages, 8 figures. Final version published in PLoS On

    A Low Dimensional Description of Globally Coupled Heterogeneous Neural Networks of Excitatory and Inhibitory Neurons

    Get PDF
    Neural networks consisting of globally coupled excitatory and inhibitory nonidentical neurons may exhibit a complex dynamic behavior including synchronization, multiclustered solutions in phase space, and oscillator death. We investigate the conditions under which these behaviors occur in a multidimensional parametric space defined by the connectivity strengths and dispersion of the neuronal membrane excitability. Using mode decomposition techniques, we further derive analytically a low dimensional description of the neural population dynamics and show that the various dynamic behaviors of the entire network can be well reproduced by this reduced system. Examples of networks of FitzHugh-Nagumo and Hindmarsh-Rose neurons are discussed in detail
    corecore