801 research outputs found

    Slant cues are processed with different latencies for the online control of movement

    Get PDF
    For the online control of movement, it is important to respond fast. The extent to which cues are effective in guiding our actions might therefore depend on how quickly they provide new information. We compared the latency to alter a movement when monocular and binocular cues indicated that the surface slant had changed. We found that subjects adjusted their movement in response to three types of information: information about the new slant from the monocular image, information about the new slant from binocular disparity, and information about the change in slant from the change in the monocular image. Responses to changes in the monocular image were approximately 40 ms faster than responses to a new slant estimate from binocular disparity and about 90 ms faster than responses to a new slant estimate from the monocular image. Considering these delays, adjustments of ongoing movements to changes in slant will usually be initiated by changes in the monocular image. The response will later be refined on the basis of combined binocular and monocular estimates of slant. © ARVO

    Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    Get PDF
    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation

    Calculating Casimir Energies in Renormalizable Quantum Field Theory

    Get PDF
    Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges have been studied by several authors. Quite recently, Graham et al. have re-examined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well-known that in two dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general dimension DD not equal to an even integer the corresponding Casimir energy arising from massless fields interior and exterior to a hyperspherical shell is finite. It has also long been recognized that the Casimir energy for massive fields is divergent for D1D\ne1. These conclusions are reinforced by a calculation of the relevant leading Feynman diagram in DD and three dimensions. There is therefore no doubt of the validity of the conventional finite Casimir calculations.Comment: 25 pages, REVTeX4, 1 ps figure. Revision includes new subsection 4B and Appendix, and other minor correction

    The long-time dynamics of two hydrodynamically-coupled swimming cells

    Get PDF
    Swimming micro-organisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system - of dimension two - describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of tt\to\infty, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations

    Reliability of fluctuation-induced transport in a Maxwell-demon-type engine

    Get PDF
    We study the transport properties of an overdamped Brownian particle which is simultaneously in contact with two thermal baths. The first bath is modeled by an additive thermal noise at temperature TAT_A. The second bath is associated with a multiplicative thermal noise at temperature TBT_B. The analytical expressions for the particle velocity and diffusion constant are derived for this system, and the reliability or coherence of transport is analyzed by means of their ratio in terms of a dimensionless P\'{e}clet number. We find that the transport is not very coherent, though one can get significantly higher currents.Comment: 14 pages, 5 figure

    Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Get PDF
    An epithermal neutron imager based on detecting alpha particles created by boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons below 0.1 eV, the fast neutrons register insignificantly in the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications

    Multiple current reversals in forced inhomogeneous ratchets

    Get PDF
    Transport properties of overdamped Brownian paricles in a rocked thermal ratchet with space dependent friction coefficient is studied. By tuning the parameters, the direction of current exhibit multiple reversals, both as a function of the thermal noise strength as well as the amplitude of rocking force. Current reversals also occur under deterministic conditions and exhibits intriguing structure. All these features arise due to mutual interplay between potential asymmetry,noise, driving frequency and inhomogeneous friction.Comment: 6 figure
    corecore