801 research outputs found
Slant cues are processed with different latencies for the online control of movement
For the online control of movement, it is important to respond fast. The extent to which cues are effective in guiding our actions might therefore depend on how quickly they provide new information. We compared the latency to alter a movement when monocular and binocular cues indicated that the surface slant had changed. We found that subjects adjusted their movement in response to three types of information: information about the new slant from the monocular image, information about the new slant from binocular disparity, and information about the change in slant from the change in the monocular image. Responses to changes in the monocular image were approximately 40 ms faster than responses to a new slant estimate from binocular disparity and about 90 ms faster than responses to a new slant estimate from the monocular image. Considering these delays, adjustments of ongoing movements to changes in slant will usually be initiated by changes in the monocular image. The response will later be refined on the basis of combined binocular and monocular estimates of slant. © ARVO
Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes
We present an abstract framework for analyzing the weak error of fully
discrete approximation schemes for linear evolution equations driven by
additive Gaussian noise. First, an abstract representation formula is derived
for sufficiently smooth test functions. The formula is then applied to the wave
equation, where the spatial approximation is done via the standard continuous
finite element method and the time discretization via an I-stable rational
approximation to the exponential function. It is found that the rate of weak
convergence is twice that of strong convergence. Furthermore, in contrast to
the parabolic case, higher order schemes in time, such as the Crank-Nicolson
scheme, are worthwhile to use if the solution is not very regular. Finally we
apply the theory to parabolic equations and detail a weak error estimate for
the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic
heat equation
Calculating Casimir Energies in Renormalizable Quantum Field Theory
Quantum vacuum energy has been known to have observable consequences since
1948 when Casimir calculated the force of attraction between parallel uncharged
plates, a phenomenon confirmed experimentally with ever increasing precision.
Casimir himself suggested that a similar attractive self-stress existed for a
conducting spherical shell, but Boyer obtained a repulsive stress. Other
geometries and higher dimensions have been considered over the years. Local
effects, and divergences associated with surfaces and edges have been studied
by several authors. Quite recently, Graham et al. have re-examined such
calculations, using conventional techniques of perturbative quantum field
theory to remove divergences, and have suggested that previous self-stress
results may be suspect. Here we show that the examples considered in their work
are misleading; in particular, it is well-known that in two dimensions a
circular boundary has a divergence in the Casimir energy for massless fields,
while for general dimension not equal to an even integer the corresponding
Casimir energy arising from massless fields interior and exterior to a
hyperspherical shell is finite. It has also long been recognized that the
Casimir energy for massive fields is divergent for . These conclusions
are reinforced by a calculation of the relevant leading Feynman diagram in
and three dimensions. There is therefore no doubt of the validity of the
conventional finite Casimir calculations.Comment: 25 pages, REVTeX4, 1 ps figure. Revision includes new subsection 4B
and Appendix, and other minor correction
The long-time dynamics of two hydrodynamically-coupled swimming cells
Swimming micro-organisms such as bacteria or spermatozoa are typically found
in dense suspensions, and exhibit collective modes of locomotion qualitatively
different from that displayed by isolated cells. In the dilute limit where
fluid-mediated interactions can be treated rigorously, the long-time
hydrodynamics of a collection of cells result from interactions with many other
cells, and as such typically eludes an analytical approach. Here we consider
the only case where such problem can be treated rigorously analytically, namely
when the cells have spatially confined trajectories, such as the spermatozoa of
some marine invertebrates. We consider two spherical cells swimming, when
isolated, with arbitrary circular trajectories, and derive the long-time
kinematics of their relative locomotion. We show that in the dilute limit where
the cells are much further away than their size, and the size of their circular
motion, a separation of time scale occurs between a fast (intrinsic) swimming
time, and a slow time where hydrodynamic interactions lead to change in the
relative position and orientation of the swimmers. We perform a multiple-scale
analysis and derive the effective dynamical system - of dimension two -
describing the long-time behavior of the pair of cells. We show that the system
displays one type of equilibrium, and two types of rotational equilibrium, all
of which are found to be unstable. A detailed mathematical analysis of the
dynamical systems further allows us to show that only two cell-cell behaviors
are possible in the limit of , either the cells are attracted to
each other (possibly monotonically), or they are repelled (possibly
monotonically as well), which we confirm with numerical computations
Reliability of fluctuation-induced transport in a Maxwell-demon-type engine
We study the transport properties of an overdamped Brownian particle which is
simultaneously in contact with two thermal baths. The first bath is modeled by
an additive thermal noise at temperature . The second bath is associated
with a multiplicative thermal noise at temperature . The analytical
expressions for the particle velocity and diffusion constant are derived for
this system, and the reliability or coherence of transport is analyzed by means
of their ratio in terms of a dimensionless P\'{e}clet number. We find that the
transport is not very coherent, though one can get significantly higher
currents.Comment: 14 pages, 5 figure
Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion
An epithermal neutron imager based on detecting alpha particles created by boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons below 0.1 eV, the fast neutrons register insignificantly in the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications
Multiple current reversals in forced inhomogeneous ratchets
Transport properties of overdamped Brownian paricles in a rocked thermal
ratchet with space dependent friction coefficient is studied. By tuning the
parameters, the direction of current exhibit multiple reversals, both as a
function of the thermal noise strength as well as the amplitude of rocking
force. Current reversals also occur under deterministic conditions and exhibits
intriguing structure. All these features arise due to mutual interplay between
potential asymmetry,noise, driving frequency and inhomogeneous friction.Comment: 6 figure
- …