23 research outputs found

    The ram pressure stripped radio tails of galaxies in the Coma cluster

    Get PDF
    Previous studies have revealed a population of galaxies in galaxy clusters with ram pressure stripped (RPS) tails of gas and embedded young stars. We observed 1.4 GHz continuum and H I emission with the Very Large Array in its B-configuration in two fields of the Coma cluster to study the radio properties of RPS galaxies. The best continuum sensitivities in the two fields are 6 and 8 ”Jy per 4 arcsec beam, respectively, which are 4 and 3 times deeper than those previously published. Radio continuum tails are found in 10 (8 are new) out of 20 RPS galaxies, unambiguously revealing the presence of relativistic electrons and magnetic fields in the stripped tails. Our results also hint that the tail has a steeper spectrum than the galaxy. The 1.4 GHz continuum in the tails is enhanced relative to their H α emission by a factor of ∌7 compared to the main bodies of the RPS galaxies. The 1.4 GHz continuum of the RPS galaxies is also enhanced relative to their infrared emission by a factor of ∌2 compared to star-forming galaxies. The enhancement is likely related to ram pressure and turbulence in the tail. We furthermore present H I detections in three RPS galaxies and upper limits for the other RPS galaxies. The cold gas in D100’s stripped tail is dominated by molecular gas, which is likely a consequence of the high ambient pressure. No evidence of radio emission associated with ultra-diffuse galaxies is found in our data

    Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z \u3e 4 Lensed by a Frontier Fields Cluster

    Get PDF
    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717_Az9, is at z \u3e 4 and the strong lensing model (ÎŒ=7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 1010 Le and an obscured star formation rate of 14.6 ± 4.5 Me yr−1. The unobscured star formation rate from the UV is only 4.1 ± 0.3 Me yr−1, which means the total star formation rate (18.7 ± 4.5 Me yr−1) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 109 Me, MACS0717_Az9 is one of only a handful of z \u3e 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX-ÎČ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Hubble Space Telescope and HI Imaging of Strong Ram Pressure Stripping in the Coma Spiral NGC 4921: Dense Cloud Decoupling and Evidence for Magnetic Binding in the ISM

    No full text
    International audienceRemarkable dust extinction features in the deep Hubble Space Telescope (HST) V and I images of the face-on Coma cluster spiral galaxy NGC 4921 show in unprecedented ways how ram pressure strips the ISM from the disk of a spiral galaxy. New VLA HI maps show a truncated and highly asymmetric HI disk with a compressed HI distribution in the NW, providing evidence for ram pressure acting from the NW. Where the HI distribution is truncated in the NW region, HST images show a well-defined, continuous front of dust that extends over 90° and 20 kpc. This dust front separates the dusty from dust-free regions of the galaxy, and we interpret it as galaxy ISM swept up near the leading side of the ICM-ISM interaction. We identify and characterize 100 pc-1 kpc scale substructure within this dust front caused by ram pressure, including head-tail filaments, C-shaped filaments, and long smooth dust fronts. The morphology of these features strongly suggests that dense gas clouds partially decouple from surrounding lower density gas during stripping, but decoupling is inhibited, possibly by magnetic fields that link and bind distant parts of the ISM

    Identification of filamentary structures in the environment of superclusters of galaxies in the Local Universe

    No full text
    International audienceContext. Characterization of the internal structure of the superclusters of galaxies (walls, filaments, and knots where the clusters are located) is crucial for understanding the formation of the large-scale structure and for outlining the environment where galaxies evolved in the last few gigayears.Aims. We aim to detect the compact regions of high relative density (clusters and rich groups of galaxies), to map the elongated structures of low relative density (filaments, bridges, and tendrils of galaxies), and to characterize the galaxies that populate the filaments and study the environmental effects they are subject to.Methods. We used optical galaxies with spectroscopic redshifts from the SDSS-DR13 inside rectangular boxes encompassing the volumes of a sample of 46 superclusters of galaxies up to z = 0.15. A virial approximation was applied to correct the positions of the galaxies in the redshift space for the “finger of God” projection effect. Our methodology implements different classical pattern recognition and machine-learning techniques (Voronoi tessellation, hierarchical clustering, graph-network theory, and minimum spanning trees, among others), pipelined in the Galaxy System-Finding algorithm and the Galaxy Filament-Finding algorithm.Results. In total, we detected 2705 galaxy systems (clusters and groups, of which 159 are new) and 144 galaxy filaments in the 46 superclusters of galaxies. The filaments we detected have a density contrast of above 3, with a mean value of around 10, a radius of about 2.5 h70−1 Mpc, and lengths of between 9 and 130 h70−1 Mpc. Correlations between the galaxy properties (mass, morphology, and activity) and the environment in which they reside (systems, filaments, and the dispersed component) suggest that galaxies closer to the skeleton of the filaments are more massive by up to 25% compared to those in the dispersed component; 70% of the galaxies in the filament region present early-type morphologies and the fractions of active galaxies (both AGNs and star-forming galaxies) seem to decrease as galaxies approach the filament.Conclusions. Our results support the idea that galaxies in filaments are subject to environmental effects leading them to be more massive (probably due to larger rates of both merging and gas accretion), less active both in star formation and nuclear activity, and prone to the density–morphology relation. These results suggest that preprocessing in large-scale filaments could have significant effects on galaxy evolution.Key words: galaxies: groups: general / galaxies: clusters: general / large-scale structure of Universe / methods: data analysis / galaxies: evolution⋆ Full Table 4 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/637/A3
    corecore