16 research outputs found

    In vivo detection of changes in cutaneous carotenoids after chemotherapy using shifted excitation resonance Raman difference and fluorescence spectroscopy

    Get PDF
    Background: Various cutaneous toxicities under chemotherapy indicate a local effect of chemotherapy by secretion after systemic application. Here, changes in the fluorescence and Raman spectral properties of the stratum corneum subsequent to intravenous chemotherapy were assessed. Methods: Twenty healthy subjects and 20 cancer patients undergoing chemotherapy were included. Measurement time points in cancer patients were before the first cycle of chemotherapy (Tbase) and immediately after intravenous application of the chemotherapy (T1). Healthy subjects were measured once without any further intervention. Measurements were conducted using an individually manufactured system consisting of a handheld probe and a wavelength‐tunable diode laser‐based 488 nm SHG light source. Hereby, changes in both skin fluorescence and shifted excitation resonance Raman difference spectroscopy (SERRDS) carotenoid signals were assessed. Results: Healthy subjects showed significantly (P < .001) higher mean concentrations of carotenoids compared to cancer subjects at Tbase. An increase in fluorescence intensity was detected in almost all patients after chemotherapy, especially after doxorubicin infusion. Furthermore, a decrease in the carotenoid concentration in the skin after chemotherapy was found. Conclusion: The SERRDS based noninvasive detection can be used as an indirect quantitative assessment of fluorescent chemotherapeutics. The lower carotenoid SERRDS intensities at Tbase might be due to cancerous diseases and co‐medication

    Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X

    Get PDF
    During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2

    Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X

    No full text
    Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes

    Experimental investigation of the ECRH stray radiation during the start-up phase in Wendelstein 7-X

    Get PDF
    Electron cyclotron resonance heating (ECRH) is the main heating mechanism in the Wendelstein 7-X stellarator (W7-X). W7-X is equipped with five absolutely calibrated sniffer probes that are installed in each of the five modules of the device. The sniffer probes monitor energy flux of unabsorbed ECRH radiation in the device and interlocks are fed with the sniffer probe signals. The stray radiation level in the device changes significantly during the start-up phase: Plasma is a strong microwave absorber and during its formation the stray radiation level in sniffer probes reduces by more than 95%. In this paper, we discuss the influence of neutral gas pressure and gyrotron power on plasma breakdown processes

    Linear dichroism in few-photon ionization of laser-dressed helium

    No full text
    Abstract: Ionization of laser-dressed atomic helium is investigated with focus on photoelectron angular distributions stemming from two-color multi-photon excited states. The experiment combines extreme ultraviolet (XUV) with infrared (IR) radiation, while the relative polarization and the temporal delay between the pulses can be varied. By means of an XUV photon energy scan over several electronvolts, we get access to excited states in the dressed atom exhibiting various binding energies, angular momenta, and magnetic quantum numbers. Furthermore, varying the relative polarization is employed as a handle to switch on and off the population of certain states that are only accessible by two-photon excitation. In this way, photoemission can be suppressed for specific XUV photon energies. Additionally, we investigate the dependence of the photoelectron angular distributions on the IR laser intensity. At our higher IR intensities, we start leaving the simple multi-photon ionization regime. The interpretation of the experimental results is supported by numerically solving the time-dependent Schrödinger equation in a single-active-electron approximation. Graphic abstract: [Figure not available: see fulltext.

    Photoelectron spectroscopy of laser-dressed atomic helium

    No full text
    © 2020 authors. Photoelectron emission from excited states of laser-dressed atomic helium is analyzed with respect to laser intensity-dependent excitation energy shifts and angular distributions. In the two-color exteme ultraviolet (XUV)-infrared (IR) measurement, the XUV photon energy is scanned between 20.4 eV and the ionization threshold at 24.6 eV, revealing electric dipole-forbidden transitions for a temporally overlapping IR pulse (≈1012Wcm-2). The interpretation of the experimental results is supported by numerically solving the time-dependent Schrödinger equation in a single-active-electron approximation

    Frequency Stabilization of Megawatt-Class 140 GHz Gyrotrons at W7-X Using an Off-the-Shelf PLL System

    No full text
    An off-the-shelf Phase-Locked Loop (PLL) system is used to stabilize the free-running oscillation frequencies of the 140 GHz, 1 MW CW gyrotrons of the companies Thales, France, and CPI, USA, that both operate at the ECRH system of the Wendelstein 7-X (W7-X) stellarator at IPP Greifswald, Germany. Both tubes are equipped with diode-type Magnetron Injection Guns (MIGs). Considering each of both type of gyrotrons as a Voltage Controlled Oscillator (VCO), each individual gyrotron is controlled by the variation of the body voltage. The results of the experiments demonstrate the capability of the developed and implemented inexpensive off-the-shelf PLL system. It is possible to stabilize the oscillation frequency within a full -20 dB bandwidth of < 100 kHz. Applications such as Collective Thomson Scattering (CTS) systems to accurately diagnose the ions in fusion plasmas could benefit from this development in future

    MISTRAL campaign in support of W7-X long pulse operation

    No full text
    Following two initial campaigns [1], Stellarator Wendelstein 7-X (W7-X) has now completed the construction phase by installation of active cooling of all plasma facing components. The machine is presently commissioned for the next campaign (OP2) aiming at 1 GJ per pulse, e.g. 100 s at 10 MW, eventually aiming at 18 GJ, e.g. 1800 s at 10 MW. The key heating system is the Electron Cyclotron Resonance Heating (ECRH) system, consisting of 10 gyrotrons with power per gyrotron ranging from 0.6 MW up to 1.0 MW at 140 GHz. A phased upgrade of the installation is in progress with the addition of 2 gyrotrons and the development of 1.5 MW and 2.0 MW gyrotrons, such that at the end of the upgrade 4 gyrotrons will be available in each power class of 1.0, 1.5 and 2.0 MW [2]. The increased ECRH power, combined with O2 and X3 heating schemes at high densities, will lead to increased microwave stray radiation. This is non-absorbed microwave power that diffuses inside the vessel and is incident on all in-vessel components including vacuum windows and attached diagnostic systems. A fraction of the stray radiation is absorbed by resistive or dielectric losses of these components, leading to thermal loads that scale with stray radiation levels and pulse length. At W7-X a high power microwave stray radiation launch facility ’MISTRAL’ is available that is used to qualify invessel components for use at specified microwave surface power densities [Wm−2]. This paper reports on MISTRAL campaigns in 2020 2021 for testing of stray radiation loads during OP2 in W7-X, as well as on an EUROfusion program assessing stray radiation loads on ITER components. A dedicated, absolutely calibrated, caloric load was developed for the campaign to obtain measurement of stray radiation power levels as well as to conveniently expose samples. Amongst other we report on shielding concepts using metal enclosures combined with microwave absorbing coatings and dielectric heating of vacuum windows

    Advanced electron cyclotron heating and current drive experiments on the stellarator Wendelstein 7-X

    No full text
    During the first operational phase (OP 1.1) of Wendelstein 7-X (W7-X) electron cyclotron resonance heating (ECRH) was the exclusive heating method and provided plasma start-up, wall conditioning, heating and current drive. Six gyrotrons were commissioned for OP1.1 and used in parallel for plasma operation with a power of up to 4.3 MW. During standard X2-heating the spatially localized power deposition with high power density allowed controlling the radial profiles of the electron temperature and the rotational transform. Even though W7-X was not fully equipped with first wall tiles and operated with a graphite limiter instead of a divertor, electron densities of n e > 3·1019 m-3 could be achieved at electron temperatures of several keV and ion temperatures above 2 keV. These plasma parameters allowed the first demonstration of a multipath O2-heating scenario, which is envisaged for safe operation near the X-cutoff-density of 1.2·1020 m-3 after full commissioning of the ECRH system in the next operation phase OP1.2
    corecore